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TRIGONOMETRY IN EXTENDED HYPERBOLIC SPACE
AND EXTENDED DE SITTER SPACE

Yunhi Cho

Abstract. We study the hyperbolic cosine and sine laws in the extended
hyperbolic space which contains hyperbolic space as a subset and is an
analytic continuation of the hyperbolic space. And we also study the
spherical cosine and sine laws in the extended de Sitter space which con-
tains de Sitter space Sn

1 as a subset and is also an analytic continuation
of de Sitter space. In fact, the extended hyperbolic space and extended
de Sitter space are the same space only differ by −1 multiple in the met-
ric. Hence these two extended spaces clearly show and apparently explain
that why many corresponding formulas in hyperbolic and spherical space
are very similar each other. From these extended trigonometry laws, we
can give a coherent and geometrically simple explanation for the various
relations between the lengths and angles of hyperbolic polygons, and rela-
tions on de Sitter polygons which lie on S2

1 , and tangent laws for various
polyhedra.

1. Introduction

There are well known hyperbolic cosine and sine laws for triangles in the
hyperbolic space Hn. If we consider Kleinian model which contains the hyper-
bolic space as an open ball, we can think about more general triangle which
lies outside the hyperbolic space or intersects the ideal boundary ∂Hn. Then
there is a difficulty in geometric interpretation of such general type triangle or
other geometric objects. However the extended hyperbolic space which is an
analytic continuation of the hyperbolic space can give a playground for such
general geometric objects. Similarly extended de Sitter space is obtained from
de Sitter space Sn

1 and shows the phenomena of the spherical geometry Sn, just
like the extended hyperbolic space shows that of the hyperbolic geometry Hn.

In Section 2, we discuss what the extended model is and how it can be
constructed. The extended hyperbolic space which contains hyperbolic space as
a subset looks like the unit sphere Sn topologically. More detailed explanations
about the extended space are given in [2].
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In Section 3, we explain how to define the notions of length and angle on the
extended space. In order to understand the extended space more precisely, we
should use ε-approximation technique. However here we only consider simple
geometric objects such as length and angle, and we need not deeper theory of
the model. Here the length and angle must take complex values in general.
This kind of complex valued angle was introduced by Dzan ([5], [6]). He also
constructed natural flat Lorentzian geometry on Rn,1 that looks like Euclidean
geometry on Rn+1, then many formulas on Rn,1 and Rn+1 exactly coincide
each other. Schlenker [12] also defined complex valued distance and angle on
Kleinian model using cross ratio. Our approach to distance and angle on the
extended space is more geometrically motivated and simple, and turned out to
be the same as Dzan and Schlenker’s.

In Section 4, we prove the generalized hyperbolic (resp. spherical) cosine
and sine laws for the extended hyperbolic (resp. extended de Sitter) space,
those laws have exactly the same representation (see Theorems 4.13 and 4.15)
of the original hyperbolic space Hn (resp. spherical space Sn). Note that most
of the proof and its difficulty for the generalized cosine and dual cosine laws
come from the sign (±) determining process. These generalized cosine and sine
laws explain and easily deduce the well-known relations (see Fenchel’s book
[8] or [11] or [13]) about the lengths and angles of hyperbolic polygons in a
simple unified way, for example, Lambert quadrilateral, pentagon, rectangular
hexagon, and so on. Furthermore we can also obtain the similar relations
between the lengths and angles of de Sitter polygons on the pseudo-sphere (=
Lorentz space of constant curvature 1) S2

1 . As an three dimensional application,
we show a unified method about the tangent laws on some simple hyperbolic
or spherical polyhedra.

Lastly we remark some problems at the end of the paper which seem to
be important phenomena between the hyperbolic space Hn and the spherical
space Sn.

Acknowledgement. The author would like to thank to Hyuk Kim and Hy-
ounggyu Choi. They gave some helpful comments for this paper.

2. Extended hyperbolic space and extended de Sitter space

Our main concern is the unified trigonometry on the extended space, so
we should know what the extended space is and why we need to know the
trigonometry on the model. For the answer of the first question, the model is
well explained in [2] and reader can easily understand the extended hyperbolic
model itself and the importance of the model. However we will introduce some
necessary parts of the theory in the following for convenience. And the second
question will be considered in Section 4.

To define and explain the extended model, let’s start with the hyperboloid
model of hyperbolic space. Let Rn,1 denote the real vector space Rn+1 equipped
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with the bilinear form of signature (n, 1),

〈x, y〉 = −x0y0 + x1y1 + · · ·+ xnyn

for all x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn). Then the hyperbolic spaces
Hn

+ and Hn
−, pseudo-sphere Sn

1 and light cone Ln are defined by

Hn
+ := {x ∈ Rn,1|〈x, x〉 = −1, x0 > 0},

Hn
− := {x ∈ Rn,1|〈x, x〉 = −1, x0 < 0},

Sn
1 := {x ∈ Rn,1|〈x, x〉 = 1},

Ln := {x ∈ Rn,1|〈x, x〉 = 0}.

We already know that Hn
± has the induced Riemannian manifold structure

which has a constant sectional curvature −1, and that Sn
1 becomes a Lorentzian

manifold (or semi-Riemannian of signature (−, +, . . . , +)) which has a constant
sectional curvature 1, also called as de Sitter space (see [10]). Now we consider
the Kleinian projective model. By the radial projection π1 with respect to the
origin from Hn

+ onto {1} × Rn, we obtain the induced Riemannian metric on
the ball in {1} × Rn as follows ([1], [11]),

ds2
K =

(
Σxidxi

1− |x|2
)2

+
Σdx2

i

1− |x|2 .

If we extend this metric beyond the unit ball using the same formula, this
metric induces a semi-Riemannian structure outside the unit ball in {1} ×Rn.
In fact, we compare this metric with the one induced from the Lorentzian space
Sn

1 ∩{x = (x0, x1, . . . , xn)|x0 > 0}, by the radial projection into {1}×Rn, then
they differ only by sign −1. This sign change of the metric implies the sign
change of the sectional curvature from +1 to −1, which, of course, the curvature
of the metric ds2

K . In this way, we obtain an extended Kleinian model with a
singular metric ds2

K defined on {1} × Rn, and this extended hyperbolic space
({1} × Rn, ds2

K) will be denoted by Kn.
In this paper, it is more convenient to consider the Euclidean unit sphere

in Rn+1 with the induced metric coming from Hn
± and −Sn

1 (Sn
1 with −1× its

metric) via radial projection, and denote this model by Sn
H . This hyperbolic

sphere model Sn
H (another model of the extended hyperbolic space) on the

Euclidean sphere {x = (x0, x1, . . . , xn)|x2
0 +x2

1 + · · ·+x2
n = 1} has three parts:

Two radial images of Hn
±, called the hyperbolic part, as two open disks on

upper and lower hemisphere and the radial image of Sn
1 , called the Lorentzian

part, and these all three parts have constant sectional curvature −1.
We can study the geometry of Sn

H as an analytic continuation of the hyper-
bolic space Hn. First let’s define the volume of a set on the hyperbolic sphere.
We denote dVK and dVS for the volume forms on Kn and Sn

H respectively.
From the metric of the extended Kleinian model, we have the following volume
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form dVK (see §6.1 of [11]).

(1)
dVK = (det(gij))

1
2 dx1 ∧ · · · ∧ dxn,

=
dx1 ∧ · · · ∧ dxn

(1− |x|2)n+1
2

.

For any set U on Sn
H ∩ {x ∈ Rn,1|x0 > 0}, we can evaluate the volume of U

by

vol(U) =
∫

U

dVS

=
∫

π−1(U)

dVK (where π is a radial projection: Kn → Sn
H .)

=
∫

π−1(U)

dx1 ∧ · · · ∧ dxn

(1− |x|2)n+1
2

=
∫

G−1(π−1(U))

rn−1

(1− r2)
n+1

2

dr ∧ dθ,

where G : (r, θ) 7→ (x1, . . . , xn) is the polar coordinates and dθ is the volume
form of the Euclidean sphere Sn−1.

If F (r) =
∫

G−1(U)∩Sn−1(r)
dθ is an analytic function of r, then the above

integral becomes a 1-dimensional integral as follows.
∫

G−1(U)

rn−1

(1− r2)
n+1

2

drdθ =
∫ b

a

rn−1F (r)

(1− r2)
n+1

2

dr.

In general this integral does not make sense and the most natural thing we can
do instead is to define vol(U) as the following contour integral:

Convention 2.1.

(2) volH(U) :=
∫

γ

rn−1F (r)

(1− r2)
n+1

2

dr,

where γ is a contour from a to b for a < 1 < b as depicted below. Here we will
fix its contour type as clockwise around z = 1 once and for all throughout the
paper.

r
a b1 γ

Fig . 1



TRIGONOMETRY 1103

Therefore we can compute the length of line segment on S1
H by using the

line integral (2). It is easy to see that

(3) dH(0, b) :=
∫ b

0,γ

dr

1− r2
=





1
2

log
1 + b

1− b
, 0 ≤ b < 1,

1
2

log
b + 1
b− 1

+
π

2
i, 1 < b,

where dH denotes 1-dimensional extended hyperbolic length of the line segment
[0, b] in K1 in the sense of (2).

If F (r) is an analytic function around r = 1, then it is easily shown (see
Proposition 2.1 of [2]) that

lim
ε→0

∫

U

dVK,ε := lim
ε→0

∫

U

dεr
n−1

(d2
ε − r2)

n+1
2

drdθ = volH(U), where dε = 1−εi (ε > 0).

We called the above limit type approach ε-approximation technique which is
more useful in the theoretical consideration. If we choose dε = 1 + εi instead,
then limε→0

∫
U

dVK,ε will give a different value and a slightly different geometry.
That is exactly corresponding to a contour integration with a counterclockwise
around z = 1, i.e., going around at z = 1 through lower half plane.

To determine the various geometric quantities which are to be obtained as
integrations on Sn

H , the norms of vectors are essential. From the sign change
of the metric on the pseudo-sphere Sn

1 , the norms of tangent vectors on the
Lorentzian part are calculated by

‖xp‖2 = −(−x2
0 + x2

1 + · · ·+ x2
n),

and we should determine the sign of ‖xp‖ among ±1 and ±i. We can find
suitable consistent sign choices for the norms of various tangent vectors on Sn

H .
We list the signs of the tangent vectors in Convention 2.2 below and Fig. 2.
See [2] for the explanation for these choices of the signs.

H 
n 

0 

1 
_ 

1 
_ 

i 

i 

0

1

Fig . 2

Convention 2.2. A tangent vector on the hyperbolic part on Sn
H has a positive

real norm, and a tangent vector on the Lorentzian part on Sn
H has a negative

real, zero, or positive pure imaginary norm depending on whether it is timelike,
lightlike, or spacelike respectively.
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Now let’s think about another analytic continuation of the pseudo-sphere
Sn

1 . Basically the induced metric from Sn
1 ∩ {x|x0 > 0} into {1} × Rn by the

radial projection differs by −1 from Kleinian metric ds2
K , and we can extend

this metric to the inside of the unit ball. Note that we always fix the sign of the
norm of the tangent vector on Sn−1 = Sn

1 ∩ {x|x0 = 0} as +1 as usual. Hence
we will assume the sign of the norm of the spacelike vector on Sn

S (see below) as
+1. Here we denote the space and metric as −Kn and ds2

−K respectively. Then
by similar arguments we can consider the unit sphere in Rn+1 with induced
metric coming from the metric ds2

−K by the radial projection, and we call this
model as a spherical sphere model, which is one model of the extended de
Sitter space, and is denoted by Sn

S . Also we denote dV−K and dV−S as the
volume forms on −Kn and Sn

S respectively, where dV−K = (−1)
n
2 dVK and

dV−S = (−1)
n
2 dVS . Now we have to fix the exact value of (−1)

n
2 between

in and (−i)n. By comparison of the norm of spacelike tangent vector at a
Lorentzian point on Sn

H and Sn
S , (−i)n becomes a reasonable choice between in

and (−i)n.

Convention 2.3. For any domain U on Sn
S , we evaluate the n-dimensional

volume of U by

volS(U) =
∫

U

dV−S = (−i)n

∫

U

dVS = (−i)nvolH(U).

From the similar chasing of volume form on S1
S , S2

S and considering of the
equator of pseudo-sphere Sn

1 , i.e., the Euclidean sphere Sn−1, we naturally
conclude the following convention.

Convention 2.4. A tangent vector on the hyperbolic part on Sn
S has a negative

pure imaginary norm, and a tangent vector on the Lorentzian part on Sn
S has

a positive pure imaginary, zero, or positive real norm depending on whether it
is timelike, lightlike, or spacelike respectively (see Fig. 3).

H
n

0 
_
i

i

0

1

1

i

Fig . 3

We can see one of the similarities between Sn
H , Sn

S and Sn in the following
theorem (see [2] and Convention 2.3 for a proof).

Theorem 2.5. volH(Sn
H)= in · vol(Sn) and volS(Sn

S) = vol(Sn).
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If we change the contour type of the integral (2), we have different relation
between volH(Sn

H) and vol(Sn). Also for the various different kinds of con-
tour types, the conventions about Sn

S should be changed and the relations
between volS(Sn) and vol(Sn) have similar modifications as the hyperbolic
ones too. If the contour is counterclockwise, then we have volH(Sn

H) =(−i)n

vol(Sn) (by slight change of the proof of Theorem 2.3 in [2]) and volS(U) =
involH(U) (counterclockwise version of Convention 2.3). Hence we also get
volS(Sn

S) =vol(Sn).
For various kinds of contour types, we easily deduce the following four for-

mulas,

volH(S2k−1
H ) ≡ i2k−1vol (S2k−1) (mod 2i2k−1 vol (S2k−1)),

volH(S2k
H ) = i2kvol (S2k),

volS(S2k−1
S ) ≡ vol (S2k−1) (mod 2 vol (S2k−1)),

volS(S2k
S ) = vol (S2k).

Above formulas say that the total volume of even dimensional model has unique
value for any contour but odd dimensional model has infinitely many values
for various types of contours.

Note that we should know that two kinds of contours (clockwise and coun-
terclockwise contour) could be supported and be comprehended by the ε-
approximation technique using dε = 1 ± εi. But it is unclear that we can
use an appropriate ε-approximation technique for other types of contours. So
we should make a proper mathematical theory to other contours.

Naturally the Lorentzian isometry group O(n, 1) can be considered as the
isometry group of the hyperbolic sphere and spherical sphere. More precisely,
we know the following proposition (see [2] for a proof and see [3] for more
delicate boundary condition).

Proposition 2.6. Let U be a domain with piecewise analytic boundary trans-
versal to ∂Hn in the extended hyperbolic space. Then volH(U) has a well-defined
finite value and volH(g(U)) = volH(U) for each g ∈ PO(n, 1).

In fact, we already know that for a given g in Isom(Hn), which is index
two subgroup of O(n, 1), and for a given domain U contained in Hn, we get
the equality vol(g(U)) = vol(U). Surprisingly the volume of nice domains
intersecting with ∂Hn(= π(Ln)) can be calculated. Though each part of the
set divided by ∂Hn has infinite volume, the total volume of two parts become
finite. This model has three infinite volume parts, π(Hn

+), π(Hn
−), and π(Sn

1 ),
but by summing these parts we can get a finite total volume and hence a finite
geometry by using a finitely additive measure theory (see [2]) without any
contradiction.



1106 YUNHI CHO

3. Length and angle on the extended hyperbolic space and
extended de Sitter space

It is obvious from the definition of its metric that the geodesics on Sn
H (resp.

Sn
S) are great circles on Sn

H (resp. Sn
S) and more generally the totally geodesic

subspaces are the intersections of the linear subspaces of Rn,1 with Sn
H (resp.

Sn
S) just like on Sn (refer to [10]).
We denote the distance between two points A and B in the extended hyper-

bolic space Sn
H as dH(A, B). Let’s first discuss the distance between two points

on S1
H . In this case, the formula (3) helps the calculation of the distance of two

points in S1
H . For instance, if A and B are symmetric with respect to the light

cone x0 = x1 in R1,1 as in Fig. 4 (i.e., A and B as vectors of R1,1 are perpen-
dicular), then their affine coordinates are a(< 1) and 1

a , and the distance will
be π

2 i by formula (3). The distance between isometric images A′ and B′ of A
and B will be again π

2 i being symmetric, and hence dH(B, B′) = −dH(A,A′)
in Fig. 4.

a

b

2
i

π

b−

a−

A

B

A′

B′

Fig . 4

To discuss the distance between two points in Sn
H in general, it suffices to

consider on S2
H .

For actual computations, it would be convenient to divide into the following
3 cases. For the case when the geodesic connecting two points meet ∂H2 trans-
versely, we may assume that these two points lie on S1

H = S2
H ∩ {x|x2 = 0} by

an isometry and can handle as discussed above.
For the case when the geodesic line connecting these two points does not

intersect ∂H2, we can send this line to the equator (= S2
H ∩ {x|x0 = 0}) of S2

H

by an isometry, and hence the distance becomes i times the distance on the
standard Euclidean unit circle.

The remaining case is when the line is tangent to ∂H2. We can obtain the
distance on the tangent line on K2 through a theoretical way, but it needs
a subtle ε-approximation technique (see [2]). In this paper, we consider the
tangent case as a definition for convenience.
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Definition 3.1. For a point x lie on ∂H2 and a dual geodesic x⊥, the lengths
of the line segments in x⊥ are defined by

dH(w, y) = 0, if w, y are in the same side with respect to x,

dH(y, z) = πi, if y, z are in the opposite sides with respect to x,

dH(x, y) = dH(x, z) =
π

2
i.

See Fig. 5.

w y x z
x
⊥

Fig . 5

In all of these discussions, we in fact have to show that 1-dimensional dis-
tance is invariant under isometry. That is shown in Theorem 4.3 in [2].

We conclude the following theorem from the above discussion.

Theorem 3.2. The total length of any great circle in Sn
H (resp. Sn

S) is 2πi
(resp. 2π).

The extended hyperbolic space with Kleinian model has a projective geo-
metric structure, so a geodesic in the model is a straight line and a dual of a
point x, i.e., x⊥ is easily obtained as usual (see Fig. 6). Then the length of a
geodesic line segment joining x (respectively y) and an arbitrary point in x⊥

(respectively y⊥) is π
2 i. (Note if the model is considered as a extended de Sitter

space, then we should change π
2 i to π

2 .) This follows since there is an isometry
which takes x and x⊥ to a point on the equator and to a longitude respectively,
and takes y and y⊥ to a north pole and to the equator respectively.

Now we define angles on this extended model Sn
H . From two tangent vectors

vp, wp at a point p on a Riemannian part, we can define an angle θ by the
equation

(4) 〈vp, wp〉 = ‖vp‖‖wp‖ cos θ, 0 ≤ θ ≤ π.

But for the Lorentzian part, we have some difficulties with this formula since
the function cos−1 is multi-valued and θ can take several complex values. The
definitions of angle have been given through the combinatorial way in [5] and
through the cross ratio in [12]. The following definition shows an easy way of
defining angle on Sn

H and Sn
S . Note that vp denotes the tangent vector at a

point p ∈ Hn
± or Sn

1 ⊂ Rn,1 and v ∈ Rn,1 independently denotes the parallel
translation of vp to origin.
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x

x
⊥

y

y
⊥

Fig . 6

Definition 3.3. For given two vectors v, w ∈ Rn,1, the angle between v and
w, θ = ∠(v, w), is defined as −i · dH(v, w) (= dS(v, w)), where dH(v, w) (resp.
dS(v, w)) is the length of a geodesic segment joining two points of Sn

H (resp.
Sn

S) radially projected from v, w to Sn
H (resp. Sn

S).

p
v

p
w

p

p
⊥v′ w′

Fig . 7

For p ∈ Sn
H and p /∈ ∂Hn, the angle ∠(vp, wp) between two tangent vectors

vp, wp ∈ TpSn
H is defined as −i ·dH(v′, w′), where v′ is a point which is obtained

by the intersection of the dual plane p⊥ and the geodesic line starting at p with
direction vp (see Fig. 7).

If p ∈ S2
H lies on ∂H2, we define the angle ∠(vi, vi+1) for the tangent vectors

v1, . . . , v5 configured as in Fig. 8 as follows:

∠(v1, v2) = ∠(v5, v1) =
π

2
, ∠(v2, v3) = ∠(v4, v5) = 0, and ∠(v3, v4) = π.

If p ∈ ∂Hn with n ≥ 3, we have another type of tangent plane at p which
touches ∂Hn at the only point p. In this plane, we define the angle at p as the
usual Euclidean angle.
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0

2

π

2

π

0
π

1
v

2
v

3
v

4
v

5
v

Fig . 8

It is clear that an angle of one rotation around a point is 2π by Definition 3.3
and Theorem 3.2. Notice that the factor −i is multiplied to normalize the total
length 2πi of the great circle in Sn

H as 2π (see Theorem 3.2).
The isometry invariance of an angle at a point p ∈ Sn

H\∂Hn is obtained from
the invariance of distance.

Remark 3.4. In fact, the second part of Definition 3.3 is obtained from the
first part of that, but we made it as a definition for convenience. Even though
a justification of the third and fourth part of the definition comes from the
ε-approximation technique, we only refer the reader to [2].

Definition 3.5. For a lune l(xp, yp), ∠(xp, yp) denotes the angle of l(xp, yp) at
the vertex p. Here the lune l(xp, yp) is the inner region generated by two half
great circles starting at p with direction xp, yp respectively and ending at −p.

A lens L(x⊥, y⊥) is the intersection of two hemispheres Hx and Hy, where
the hemisphere Hx is posed opposite to x and ∂Hx is perpendicular to x, and
∠(x⊥, y⊥) denotes the dihedral angle of the lens L(x⊥, y⊥). A lens L(x⊥, y⊥)
is called ideal if Hx ∩Hy meets the ∂Hn at two points only.

Definition 3.6. For a given lens L(x⊥, y⊥), the dihedral angle of the lens is
defined as the angle ∠(up, vp). Here up (resp. vp) is a tangent vector on ∂Hx

(resp. ∂Hy) with a base point p ∈ Hx ∩ Hy, and up, vp are perpendicular to
Hx ∩Hy. Note that for a non-ideal lens case the vertex p can take any point
in Hx ∩Hy, for an ideal lens case the vertex p only can take one of two ideal
points in Hx ∩Hy.

Remark 3.7. It is easy to show the well-definedness of the dihedral angle of
a lens. In particular for a non-ideal lens, tangent vectors up, vp are uniquely
determined up to positive constant magnitude. But for an ideal lens, tangent
vectors up, vp at an ideal point p can have infinitely many directions.

Since the dihedral angle of a polyhedron can be defined as the dihedral
angle of the induced lens naturally. The notion of dihedral angle becomes an
important object in the polyhedron theory at the extended hyperbolic space.
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A lune is a 2-dimensional object and a lens in Sn
H or Sn

S is an n-dimensional
object.

If a lune l(xp, yp) with an angle θ and a lens L(x⊥, y⊥) with a dihedral angle
α are given in S2

H or S2
S , then by case by case examinations we get one of the

following three kinds of relations (see Fig. 9):

α = π − θ or − π + θ or π + θ.

α θ

Fig . 9

We already know that the Riemannian case has unique relation α = π − θ.
For an n-dimensional lens, we also conclude the same result as the 2 dimensional
case.

Lemma 3.8. For a lens L(x⊥, y⊥), there are equalities,

∠(x⊥, y⊥) = ±(π − ∠(xp, yp)) or π + ∠(xp, yp).

Proof. The dihedral angle of non-ideal lens L(x⊥, y⊥) is the same as an angle
of a lune which is the intersection of the lens L(x⊥, y⊥) and a 2-dimensional
embedded geodesic plane(in fact, a 2-sphere) generated by a point p and two
tangent vectors xp, yp, where the point p is an arbitrary point in x⊥ ∩ y⊥. So
we can apply the 2-dimensional result to the n-dimensional case.

For an ideal lens L(x⊥, y⊥), we can check the relation ∠(x⊥, y⊥) = π −
∠(xp, yp). ¤

Remark 3.9. For a given lens with dihedral angle α = ∠(x⊥, y⊥), if we define an
oriented angle θ̃ and can pass over the π, then we can unify the three relations
to a single relation α = π − θ̃.

The following lemma is given in Thurston’s book [13] or [11]. At first we
need some notations: The Lorentzian norm of a vector x in Rn,1 is defined to
be a complex number

‖x‖ = 〈x, x〉1/2
,

where ‖x‖ is either positive, zero, or positive pure imaginary. If ‖x‖ is positive
imaginary, we denote its absolute value by |‖x‖|. In fact, ‖x‖ can have minus or
minus pure imaginary values, but those choices are not suitable to our clockwise
contour convention 2.1.

We have to be cautious about the difference between ‖x‖ and ‖xp‖ for x ∈
Rn,1. The vector x is parallel translation of the tangent vector xp ∈ TpS

n
1 or
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TpH
n
± to the origin. If a point p is contained in the Lorentzian part of Sn

H (resp.
Sn

S), then we know ‖xp‖ = i‖x‖ (resp. ‖xp‖ = ‖x‖) by Conventions 2.2 and
2.3. Since we changed the sign of the induced metric on the Lorentzian part.
Also if a point p is contained in the hyperbolic part of Sn

H (resp. Sn
S), then we

know ‖xp‖ = ‖x‖ (resp. ‖xp‖ = −i‖x‖) by Conventions 2.2 and 2.3. Note the
sign change of metric induces 〈xp, yp〉 = −〈x, y〉. Hence we have the identity:

〈xp, yp〉
‖xp‖‖yp‖ =

〈x, y〉
‖x‖‖y‖ .

Lemma 3.10 (interpretation of the inner product). If x and y are vectors in
Rn,1, then either

(a) x, y are timelike vectors and 〈x, y〉 = ±‖x‖‖y‖ cosh dH(±x, y); or
(b) x is a timelike vector and y is a spacelike vector, and
〈x, y〉 = ±|‖x‖| ‖y‖ sinh dH(x, y⊥); or
(c) x, y are spacelike vectors and the hyperplanes x⊥, y⊥ are secant, parallel

or ultra parallel depending on whether the intersection x⊥ ∩ y⊥ pass through
respectively the inside of Hn, ∂Hn or the outside of Hn only. In the first case,
〈x, y〉 = −‖x‖‖y‖ cos ∠(x⊥, y⊥); in the second, 〈x, y〉 = ±‖x‖‖y‖; and in the
third, 〈x, y〉 = ±‖x‖‖y‖ cosh dH(x⊥, y⊥).

The above lemma has many cases for explaining the inner product. However
our new notion dH(x, y) in the extended hyperbolic space enables us unify all
these cases into a single form as in the following theorem. This shows one good
aspect of natural property of the extended space.

Theorem 3.11. For vectors x and y in the Lorentzian space Rn,1 and with
condition dH(x, y) 6= ∞, we have

〈x, y〉 = ‖x‖‖y‖ cosh dH(x, y).

Note that the case dH(x, y) = ∞ induces that cosh dH(x, y) = ∞, ‖x‖ or
‖y‖ = 0 (one of two vectors x and y becomes a lightlike vector), and 〈x, y〉 take
a certain value, hence we get 0 · ∞ = constant. In some sense, the formula is
always true for all cases.

Proof. It is sufficient to consider the following 3 cases by isometric changes.
The cases are respectively when the intersection of the plane span{v, w} and
Sn

H is S1
H , the equator S2

H ∩ {x|x0 = 0}, or the great circle tangent to ∂H2.
By linear property of 〈·, ·〉 and ‖ · ‖, and the definition of dH , we can assume

that ‖x‖, ‖y‖ = 1 or i or 0.
For the first case, let’s suppose x = (1, 0), then if y is timelike vector,

then y is represented by (± cosh a, sinh a); if y is spacelike vector, then y is
represented by (± sinh a, cosh a). Also we should consider two spacelike vectors
case x = (0, 1) and y = (sinh a,± cosh a).

Second case induces x = (0, 1, 0) and y = (0, cos a, sin a).
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Third case induces x = (1, 1, 0), y = (a, a, 1) or x = (1, 1, 0), y = (−1,−1, 0)
or x = (a, a, 1), y = (b, b, 1) or x = (a, a, 1), y = (b, b,−1). Note all above a, b
are positive numbers.

All cases are checked below.
• x = (1, 0), y = (cosh a, sinh a) implies dH(x, y) = dH(0, tanh a) =

log
√

1+tanh a
1−tanh a hence ‖x‖‖y‖ cosh dH(x, y) = i · i · cosh a = − cosh a =

〈x, y〉.
• x = (1, 0), y = (− cosh a, sinh a) implies dH(x, y) = πi − dH(0, tanh a)

hence ‖x‖‖y‖ cosh dH(x, y) = i · i · (− cosh a) = cosh a = 〈x, y〉.
• x = (1, 0), y = (± sinh a, cosh a) implies dH(x, y) = π

2 i± dH(0, tanh a)
hence ‖x‖‖y‖ cosh dH(x, y) = i · 1 · (±i sinh a) = ∓ sinh a = 〈x, y〉.

• x = (0, 1), y = (sinh a, cosh a) implies dH(x, y) = −dH(0, tanh a) hence
‖x‖‖y‖ cosh dH(x, y) = 1 · 1 · cosh a = cosh a = 〈x, y〉.

• x = (0, 1), y = (sinh a,− cosh a) implies dH(x, y) = πi + dH(0, tanh a)
hence ‖x‖‖y‖ cosh dH(x, y) = 1 · 1 · (− cosh a) = − cosh a = 〈x, y〉.

• x = (0, 1, 0), y = (0, cos a, sin a) implies dH(x, y) = ai hence ‖x‖‖y‖
cosh dH(x, y) = 1 · 1 · cos a = cos a = 〈x, y〉.

• x = (1, 1, 0), y = (a, a, 1) implies dH(x, y) = π
2 i hence ‖x‖‖y‖ cosh

dH(x, y) = 0 · 1 · cosh π
2 i = 0 = 〈x, y〉.

• x = (1, 1, 0), y = (−1,−1, 0) implies dH(x, y) = πi hence ‖x‖‖y‖ cosh
dH(x, y) = 0 · 0 · cosh πi = 0 = 〈x, y〉.

• x = (a, a, 1), y = (b, b, 1) implies dH(x, y) = 0 hence ‖x‖‖y‖ cosh
dH(x, y) = 1 · 1 · cosh 0 = 1 = 〈x, y〉.

• x = (a, a, 1), y = (b, b,−1) implies dH(x, y) = πi hence ‖x‖‖y‖ cosh
dH(x, y) = 1 · 1 · cosh πi = −1 = 〈x, y〉.

Now we have examined all the cases and complete the proof. ¤

Here we do not use the result of Lemma 3.10 in the proof of Theorem 3.11.
However we can prove Theorem 3.11 from Lemma 3.10. Conversely, we can
prove Lemma 3.10 from Theorem 3.11.

Corollary 3.12. For vectors x and y in the Lorentzian space Rn,1 and a point
p in x⊥ ∩ y⊥ and with condition dH(x, y) 6= ∞, we have

(5) 〈x, y〉 = ‖x‖‖y‖ cos∠(x, y),

〈xp, yp〉 = ‖xp‖‖yp‖ cos∠(xp, yp),

〈x, y〉 = −‖x‖‖y‖ cos ∠(x⊥, y⊥),

〈x, y〉 = ‖x‖‖y‖ cos dS(x, y).

Proof. See Lemma 3.8 and Definition 3.3. ¤

Corollary 3.12 shows that the hyperbolic sphere Sn
H and the spherical sphere

Sn
S and the definitions about length and angle on the spaces have natural and

essential properties.
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We already showed 〈x, y〉 = ‖x‖‖y‖ cos ∠(x, y) from Definition 3.3. If we
add the following three properties to the formula (5), then we can show that
the angle is uniquely determined by these four properties and equivalent to
Definition 3.3. The additional three properties are

(i) the invariance under isometry,
(ii) finite additivity of angle: if θ consists of two parts θ1 and θ2, then

θ = θ1 + θ2,
(iii) the angle of half rotation is π, i.e., a straight line has angle π.
Other equivalent angle definitions are shown at Remark 4.13 in [2].
Finally we remark that θ = π

2 implies 〈x, y〉 = 0, but 〈x, y〉 = 0 does not
imply θ = π

2 .

4. Cosine laws and sine law for general triangles

4.1. Cosine laws

In the hyperbolic space, cosine laws and sine law are basic laws as well as
the spherical space. So we have to examine whether these laws are satisfied in
the extended hyperbolic space.

We need some definitions.

Definition 4.1. For a negative real number a,
√

a means
√−ai.

For example,
√

4 = 2 and
√−4 = 2i.

Definition 4.2. For a complex number a ∈ (R ∪ Ri) − {0}, sgn(a) is defined
as follows:

sgn(a) =
{ 1 if a is positive or positive pure imaginary,

−1 if a is negative or negative pure imaginary.

The sgn notation is slightly generalized, so the usual properties are not
satisfied any more. For example, sgn(ab) = sgn(a) sgn(b) is not satisfied, if
both of a and b are pure imaginary numbers.

Definition 4.3. For non-zero real numbers a1, a2, . . . , an, the function msgn
(many elements sign) is defined by

msgn(a1, a2, . . . , an) =
√

a1
√

a2 · · · √an√
a1a2 · · · an

.

From the Definition 4.3, we easily obtain the following proposition.

Proposition 4.4. For non-zero real numbers a, a1, . . . , an, b1, . . . , bm, we ob-
tain

(a) msgn(a) = 1,
(b) msgn(a, a) = sgn(a), and msgn(a1, a2, . . . , an) msgn(a1, a2, . . . , an) = 1,
(c) msgn(a1, a2, . . . , an) msgn(b1, b2, . . . , bm)

= msgn(a1, . . . , an, b1, . . . , bm) msgn(a1 · · · an, b1 · · · bm),
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(d) msgn(a1, a2, . . . , an) = (−1)[
α
2 ], where [·] is the Gauss notation and α is

the number of negative elements among ai, i = 1, . . . , n,
(e) msgn(a1, a1, a2, a2, . . . , an, an) = sgn(a1a2 · · · an).

Proof. All of these follows easily from Definition 4.3. ¤

We also need next definitions to prove the cosine and sine laws.

Definition 4.5. (1) For a given hemisphere H ∈ Sn
H (resp. vector v ∈ Sn

H),
the algebraic dual of H (resp. v) is a point v (resp. hemisphere H) given by
〈H, v〉 ≥ 0, i.e., ∀h ∈ H 〈h, v〉 ≥ 0.

(2) For a given hemisphere H ∈ Sn
H (resp. vector v ∈ Sn

H), the geometric
dual of H (resp. v) is a point v (resp. hemisphere H) given by 〈∂H, v〉 = 0
and v /∈ H.

For convenience sake, we denote an algebraic (resp. geometric) dual of X as
Xa⊥ (resp. Xg⊥).

Remark 4.6. For a given ideal (i.e., tangent to ∂Hn) hemisphere H, the al-
gebraic dual vector v = Ha⊥ is well defined. But the geometric dual vector
v = Hg⊥ is not well defined and there are two direction choices (i.e., two points
in Sn

H) for the vector v.

Definition 4.7. For given three linearly independent non-lightlike vectors v1,
v2, v3 (resp. non-ideal hemispheres H1,H2,H3) in S2

H , the three vectors (resp.
hemispheres) induce a unique triangle 4(v1, v2, v3) (resp. 4(H1,H2,H3)) with
sides composed of “smaller” geodesics (resp. H1∩H2∩H3). Then the algebraic
(resp. geometric) dual of triangle 4 = 4(H1, H2,H3) is a triangle obtained
by three points Ha⊥

1 ,Ha⊥
2 ,Ha⊥

3 (resp. Hg⊥
1 ,Hg⊥

2 ,Hg⊥
3 ), and is denoted as

4(H1,H2,H3)a⊥ or 4a⊥ (resp. 4(H1,H2,H3)g⊥ or 4g⊥).

Remark 4.8. There are two geodesic segments joining v and w(6= −v) in Sn
H . We

can choose one geodesic segment “smaller” than the other. Here the meaning
of “smaller” is not smaller in length (because the length in this model has
complex value) but the one which does not contain two antipodal points.

The following corollary is an easy consequence of the above definitions.

Corollary 4.9. For a triangle in S2
H ,

(1) 4(v1, v2, v3)a⊥ = 4(va⊥
1 , va⊥

2 , va⊥
3 ).

(2) (4a⊥)a⊥ = 4.

Remark 4.10. The relation (4g⊥)g⊥ = 4 is not satisfied in general. In order
to get the relation (4g⊥)g⊥ = 4, we have to find a different type triangle edge
and interior construction for the definition of 4g⊥ with the same three vertices.

Now we can calculate the trigonometric formulas for a triangle in S2
H . We

start with any linearly independent non-lightlike triple (v1, v2, v3) of vectors in
R2,1. They determine a triangle 4(v1, v2, v3) formed by smaller geodesics. The
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dual basis of (v1, v2, v3) is another triple (w1, w2, w3) of vectors in R2,1, defined
by the conditions 〈vi, wi〉 = 1 and 〈vi, wj〉 = 0 if i 6= j for i, j = 1, 2, 3. Thus we
have 4(v1, v2, v3)a⊥ = 4(w1, w2, w3). If we let V and W be the matrices with
columns vi and wi, then they satisfy the equation W tSV = I, where S is a
diagonal matrix with entries (−1, 1, 1). However the matrices of inner product,
V tSV and W tSW , are still inverse to each other:

(V tSV )(W tSW ) = (V tSV )(V −1W ) = V tSW = (W tSV )t = I.

The matrix V tSV can be written as

V tSV =




c11 c12 c13

c12 c22 c23

c13 c23 c33


 , cij = 〈vi, vj〉,

and hence W tSW is represented as
(6)

W tSW =
1

det(V tSV )




c22c33 − c2
23 c13c23 − c33c12 c12c23 − c22c13

c13c23 − c33c12 c11c33 − c2
13 c12c13 − c11c23

c12c23 − c22c13 c12c13 − c11c23 c11c22 − c2
12


 .

We need another notation. Let’s denote the geometric dual of 4(v1, v2, v3)
as 4(w′1, w

′
2, w

′
3). Then the formula (5) in Corollary 3.12 gives the angle θ of

vertex v3 as
〈w′1, w′2〉 = −‖w′1‖‖w′2‖ cos θ.

Here the wi and w′i are the same or differ by −1, and the difference of 〈w′1,w′2〉
‖w′1‖‖w′2‖

and 〈w1,w2〉
‖w1‖‖w2‖ is determined by sgn (‖w1‖2‖w2‖2). Since we get wi = w′i if

‖wi‖2 < 0, and wi = −w′i if ‖wi‖2 > 0 from Definition 4.5 or simply

(7) wi = sgn (−‖wi‖2)w′i.
From equation (6), we have

〈w1, w2〉
‖w1‖‖w2‖ =

c13c23 − c33c12

det(V tSV )

/(√
c22c33 − c2

23

det(V tSV )

√
c11c33 − c2

13

det(V tSV )

)
,

= sgn
(
(c22c33 − c2

23)(c11c33 − c2
13)

) c13c23 − c33c12√
c22c33 − c2

23

√
c11c33 − c2

13

,

= sgn (‖w1‖2‖w2‖2) c13c23 − c33c12√
c22c33 − c2

23

√
c11c33 − c2

13

,

where we used the fact that det (V tSV ) is negative and
√
−
− =

√−√− ,
√

+
− =

−
√

+√− . Therefore we conclude

− cos θ =
c13c23 − c33c12√

c22c33 − c2
23

√
c11c33 − c2

13

.
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Also we know that cij = 〈vi, vj〉 = ‖vi‖‖vj‖ cosh dH(vi, vj) and simply cij =
‖vi‖‖vj‖ cosh dij from Theorem 3.11. So we get

cos θ =
‖v1‖‖v2‖‖v3‖2(cosh d12 − cosh d13 cosh d23)√

‖v1‖2‖v3‖2(1− cosh2 d13)
√
‖v2‖2‖v3‖2(1− cosh2 d23)

,

=
‖v1‖‖v2‖‖v3‖2(cosh d12 − cosh d13 cosh d23)√
−‖v1‖2‖v3‖2 sinh2 d13

√
−‖v2‖2‖v3‖2 sinh2 d23

,

= msgn(−1, ‖v1‖2, ‖v3‖2, ‖v1‖2‖w2‖2‖v3‖2)msgn(−1, ‖v2‖2, ‖v3‖2,

‖w1‖2‖v2‖2‖v3‖2)cosh d13 cosh d23 − cosh d12√
sinh2 d13

√
sinh2 d23

,

= msgn(−1, ‖v1‖2, ‖v3‖2, ‖v1‖2‖w2‖2‖v3‖2)msgn(−1, ‖v2‖2, ‖v3‖2,

‖w1‖2‖v2‖2‖v3‖2)sgn(sinh d12)sgn(sinh d23)
cosh d13 cosh d23 − cosh d12

sinh d13 sinh d23
,

by considering ‖w1‖2 det(V tSV ) = −‖v2‖2‖v3‖2 sinh2 d23 and

‖w2‖2 det(V tSV ) = −‖v1‖2‖v3‖2 sinh2 d13.

In the above, the function sgn is defined for pure imaginary number (for
example, sgn(i)=1 and sgn(−i)=−1), and sgn(sinh d23) is negative if and only
if ‖v2‖2 > 0, ‖v3‖2 > 0, and ‖w1‖2 > 0. Then we can show the following
relations by case by case examination.

(8)

sgn(sinh d13) = −msgn(−1,−‖v1‖2,−‖v3‖2,−‖w2‖2)
= sgn(−‖v1‖3‖v3‖3‖w2‖3) and

sgn(sinh d23) = −msgn(−1,−‖v2‖2,−‖v3‖2,−‖w1‖2)
= sgn(−‖v2‖3‖v3‖3‖w1‖3).

The right hand side of the equality (8) has also negative sign −1, when
‖v1‖2 < 0, ‖v3‖2 < 0, and ‖w2‖2 < 0. But we need not worry about this,
because ‖v1‖2 < 0, ‖v3‖2 < 0 implies ‖w2‖2 > 0. Hence the case does not
exist. So the relations (8) are true statements. Therefore we have to simplify
the expression:

msgn(−1, ‖v1‖2, ‖v3‖2, ‖v1‖2‖w2‖2‖v3‖2)msgn(−1, ‖v2‖2, ‖v3‖2, ‖w1‖2‖v2‖2‖v3‖2)

× msgn(−1,−‖v1‖2,−‖v3‖2,−‖w2‖2)msgn(−1,−‖v2‖2,−‖v3‖2,−‖w1‖2).
Lemma 4.11.

msgn(−1, ‖v1‖2, ‖v3‖2, ‖v1‖2‖w2‖2‖v3‖2)msgn(−1, ‖v2‖2, ‖v3‖2, ‖w1‖2‖v2‖2‖v3‖2)

× msgn(−1,−‖v1‖2,−‖v3‖2,−‖w2‖2)msgn(−1,−‖v2‖2,−‖v3‖2,−‖w1‖2) = 1.
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Proof. By using Proposition 4.4, we see

msgn(−1, ‖v2‖2, ‖v3‖2, ‖w1‖2‖v2‖2‖v3‖2)msgn(−1,−‖v2‖2,−‖v3‖2,−‖w1‖2)
= msgn(−1,−1, ‖v2‖2,−‖v2‖2, ‖v3‖2,−‖v3‖2, ‖w1‖2‖v2‖2‖v3‖2,−‖w1‖2)
× msgn(−‖w1‖2, ‖w1‖2‖v2‖2‖v3‖2)

=
(
msgn(−‖w1‖2, ‖w1‖2‖v2‖2‖v3‖2)

)2

= 1.

and similarly

msgn(−1, ‖v1‖2, ‖v3‖2, ‖v1‖2‖w2‖2‖v3‖2)msgn(−1,−‖v1‖2,−‖v3‖2,−‖w2‖2) = 1.
¤

As is shown, we conclude

cos θ =
cosh d13 cosh d23 − cosh d12

sinh d13 sinh d23
.

Letting A,B, C stand for the angles at v1, v2, v3 and a, b, c for the extended
hyperbolic lengths of opposite sides, we obtain the hyperbolic law of cosine on
the hyperbolic sphere S2

H :

cos C =
cosh a cosh b− cosh c

sinh a sinh b
.

Also we can easily deduce the spherical law of cosine on the spherical sphere
S2

S by using i · dS = dH and so cosh dH = cos dS , sinh dH = i sin dS , where
a, b, c represent the extended spherical length,

cosC =
cosh(ai) cosh(bi)− cosh(ci)

sinh(ai) sinh(bi)
,

=
cos c− cos a cos b

sin a sin b
.

To obtain the dual cosine law, we start our argument from a triangle 4(v1,
v2, v3) with its geometric dual 4g⊥ written by 4(w1, w2, w3). In the proof of
cosine law, 4(w1, w2, w3) means an algebraic dual, but from now4(w1, w2, w3)
denotes a geometric dual for convenience. The angles and edges of 4 and 4g⊥

are shown in Fig. 10.
Lemma 3.8 and Definition 3.3 deduce the relations − cos A = cosh a′, − cos B

= cosh b′, and − cos C = cosh c′, but do not gives the relations − cosA′ =
cosh a,− cos B′ = cosh b, and− cos C ′ = cosh c by Remark 4.10. By comparison
of 4a⊥ and 4g⊥, and comparison of (4a⊥)g⊥ and (4a⊥)a⊥ = 4, and the
relation (7), we can get the exact relations between cos A′, cosB′, cosC ′ and
cosh a, cosh b, cosh c:

− cos A′ =cosh a sgn(‖v2‖2‖v3‖2‖w2‖2‖w3‖2),
− cosB′ =cosh b sgn(‖v1‖2‖v3‖2‖w1‖2‖w3‖2),
− cos C ′ =cosh c sgn(‖v1‖2‖v2‖2‖w1‖2‖w2‖2).
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We already get the cosine law which is adapted to the triangle 4g⊥:

(9) cos C ′ =
cosh a′ cosh b′ − cosh c′

sinh a′ sinh b′
.

The formula (9) is changed to

− cosh c sgn(‖v1‖2‖v2‖2‖w1‖2‖w2‖2) =
cosA cos B + cos C

sinh a′ sinh b′
,

and we have to show that

(10) sinA sin B = − sinh a′ sinh b′ sgn(‖v1‖2‖v2‖2‖w1‖2‖w2‖2)
in order to obtain the dual cosine law,

cosh c =
cosA cos B + cos C

sin A sin B
.

The above formula (10) is also changed to

sinA sin B sgn(‖v1‖2‖v2‖2‖w1‖2‖w2‖2)
=− sgn(sinh a′)sgn(sinh b′)

√
sinh2 a′

√
sinh2 b′

=− sgn(sinh a′)sgn(sinh b′)
√
−1 + cos2 A

√
−1 + cos2 B

= sgn(sinh a′)sgn(sinh b′)msgn(−1, sin2 A)msgn(−1, sin2 B)
√

sin2 A
√

sin2 B,

hence we need

sgn(‖v1‖2‖v2‖2‖w1‖2‖w2‖2)
= sgn(sinh a′)sgn(sinh b′)msgn(−1, sin2 A)msgn(−1, sin2 B)sgn(sinA)sgn(sin B).

For complex numbers z1 and z2, if there exists a positive number α such
that z1 = αz2, then let’s denote simply as z1 ∼ z2. Then by easy checking, we
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know sinh a′ ∼ −‖v1‖3‖w2‖3‖w3‖3 and sin A ∼ −i‖v1‖‖w2‖‖w3‖. Also we can
easily find

sgn(−‖v1‖3‖w2‖3‖w3‖3) = sgn(−i‖v1‖‖w2‖‖w3‖)
= −msgn(−1,−‖v1‖2,−‖w2‖2,−‖w3‖2).

Therefore we can get the following identities:

sgn(sinh a′) = sgn(sin A) = −msgn(−1,−‖v1‖2,−‖w2‖2,−‖w3‖2),
sgn(sinh b′) = sgn(sin B) = −msgn(−1,−‖v2‖2,−‖w1‖2,−‖w3‖2),

and
sgn(sin2 A) = sgn(−‖v1‖2‖w2‖2‖w3‖2),
sgn(sin2 B) = sgn(−‖v2‖2‖w1‖2‖w3‖2).

The only thing left to show is the following lemma.

Lemma 4.12.
msgn(−1,−‖v1‖2‖w2‖2‖w3‖2)msgn(−1,−‖v2‖2‖w1‖2‖w3‖2)

= sgn(‖v1‖2‖v2‖2‖w1‖2‖w2‖2).
Proof. The left hand side of the above equality is equal to

msgn(−1,−1,−‖v1‖2‖w2‖2‖w3‖2,−‖v2‖2‖w1‖2‖w3‖2)
× msgn(‖v1‖2‖w2‖2‖w3‖2, ‖v2‖2‖w1‖2‖w3‖2)

= msgn(−1,−1,−‖v1‖2‖w2‖2‖w3‖2,−‖v2‖2‖w1‖2‖w3‖2, ‖v1‖2‖w2‖2‖w3‖2,
‖v2‖2‖w1‖2‖w3‖2)× msgn(‖v1‖2‖v2‖2‖w1‖2‖w2‖2, ‖v1‖2‖v2‖2‖w1‖2‖w2‖2)

= sgn(‖v1‖2‖v2‖2‖w1‖2‖w2‖2),
where we used Proposition 4.4 b), c), and d). ¤

As is shown, we deduce the dual cosine law on the hyperbolic sphere S2
H .

In order to get the dual cosine law on the spherical sphere S2
S , we need only

i · dS = dH as before.
We considered only triangle with non-lightlike vertex vectors, i.e., without

ideal vertices. If we permit lightlike vector, then the values ‖ · ‖ become 0 and
angles and lengths can be 0 or ∞. Even in this degenerated case, we can easily
convince the cosine and dual cosine law, too. Therefore we can summarize the
cosine law and dual cosine law for S2

H and S2
S in the following theorem.

Theorem 4.13. Letting A,B, C stand for the angles and a, b, c for the extended
hyperbolic lengths of opposite sides of a given triangle, we obtain the hyperbolic
cosine law and the dual cosine law on the hyperbolic sphere S2

H ,

cos C =
cosh a cosh b− cosh c

sinh a sinh b
,

cosh c =
cos A cosB + cosC

sin A sinB
.



1120 YUNHI CHO

Also we have the spherical cosine law and dual cosine law on the spherical
sphere S2

S, where a, b, c represent the extended spherical lengths,

cos C =
cos c− cos a cos b

sin a sin b
,

cos c =
cos A cosB + cosC

sin A sinB
.

Now we consider the cosine laws on the hyperbolic sphere S3
H or the spherical

sphere S3
S , then we should consider two more cases of triangles.

If a hyperplane containing the triangle does not intersect to ∂H3, then we
can send this triangle to the equator (=S3

H ∩{x|x0 = 0}) of S3
H by an isometry.

Hence the distance becomes i times the distance on the standard Euclidean
unit sphere. Therefore the above result of Theorem 4.13 also satisfied by the
well known spherical trigonometry.

Ai

2
i

π 2
π

2
i

π

A

2
π

1 2

1 2

( )θ θ  i

θ i θ  i

+

0 0

π

1 2(2 )π θ θ     i− −

1θ i
2θ  i

π
π

π
2
π

2
π

(π−θ)i

πi
π

θi

Fig . 11

If a hyperplane containing the triangle is tangent to ∂H3, then there are
only four types of triangles in the sense of the intersection of three hemispheres
(see Fig. 11).

These four types also satisfy the above cosine laws in some sense, if we
permit 0

0 = a certain number or move the denominator of the formulas to the
other side.

Therefore we can conclude a theorem about all kinds of triangles in Sn
H or

Sn
S .

Theorem 4.14. For a given triangle in Sn
H (resp. Sn

S), the triangle satisfies
the hyperbolic (resp. spherical) cosine and dual cosine laws as in Theorem 4.13.

4.2. Sine law

The hyperbolic sine law is easily obtained by the following steps. First we
assume that all vertices of a triangle are not ideal vertices. From the dual
cosine law for a right triangle with C = π

2 , we have

(11) cosh b =
cos A cosC + cos B

sin A sin C
=

cos B

sin A
,

and also cosine law induces cosh c = cosh a cosh b and

(12) cos B =
cosh a cosh c− cosh b

sinh a sinh c
.
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By substituting (11) and cosh c = cosh a cosh b into (12), we get

sinh a = sin A sinh c.

Now given any triangle with sides ã, b̃, c̃ and angles Ã, B̃, C̃, the altitude
h corresponding to side a, so we can induce sinh h = sin Ã sinh b̃ and also
sinhh = sin B̃ sinh ã. Here altitude line can be constructed by joining one
vertex point and the dual point of the line which passes the other two points.
In the proof, the non-ideal vertex condition is necessary used for cancelation.
When we consider ideal vertex case, then the sine law also satisfied by easy
checking. Therefore we proved the following theorem for hyperbolic sine law
and spherical sine law.

Theorem 4.15. Letting A,B, C stand for the angles and a, b, c for the extended
hyperbolic lengths of opposite sides of a given triangle, we obtain the hyperbolic
sine law on the hyperbolic sphere S2

H ,

sinh a

sin A
=

sinh b

sin B
=

sinh c

sin C
.

Also we have the spherical sine law on the spherical sphere S2
S, where a, b, c

represent the extended spherical lengths,
sin a

sinA
=

sin b

sin B
=

sin c

sin C
.

We introduce another proof.

Proof. We know

sinh2 a

sin2 A
=

sinh2 a sinh2 b sinh2 c

1− cosh2 a− cosh2 b− cosh2 c + 2 cosh a cosh b cosh c
,

so we conclude sinh2 a
sin2 A

= sinh2 b
sin2 B

= sinh2 c
sin2 C

, in particular, it is also satisfied when
a denominator or numerator of the formula takes 0 or ∞. Now we have to show
that sinh a

sin A = sinh b
sin B = sinh c

sin C for a non-ideal vertices triangle.
From sinh2 a sin2 B = sinh2 b sin2 A, it follows continuously that

√
sinh2 a sin2 B =

√
sinh2 b sin2 A,

msgn(sinh2 a, sin2 B)
√

sinh2 a
√

sin2 B=msgn(sinh2 b, sin2 A)
√

sinh2b
√

sin2A,

msgn(sinh2 a, sin2 B)sgn(sinh a)sgn(sinB) sinh a sin B

= msgn(sinh2 b, sin2 A)sgn(sinh b)sgn(sin A) sinh b sin A.

Hence if

msgn(sinh2 a, sin2 B)sgn(sinh a)sgn(sin B)

= msgn(sinh2 b, sin2 A)sgn(sinh b)sgn(sinA)

is satisfied, then the proof ends.
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We already know that

sgn(sinh a) = −msgn(−1,−‖v2‖2,−‖v3‖2,−‖w1‖2),
sgn(sinh2 a) = sgn(‖v2‖2‖v3‖2‖w1‖2),

sgn(sin A) = −msgn(−1,−‖v1‖2,−‖w2‖2,−‖w3‖2),
sgn(sin2 A) = sgn(−‖v1‖2‖w2‖2‖w3‖2).

It suffices to show that the following formula is true.

msgn(−1,−‖v1‖2,−‖w2‖2,−‖w3‖2)msgn(−1,−‖v1‖2,−‖v3‖2,−‖w2‖2)
×msgn(−1,−‖v2‖2,−‖w1‖2,−‖w3‖2)msgn(−1,−‖v2‖2,−‖v3‖2,−‖w1‖2)
×msgn(−‖v1‖2‖w2‖2‖w3‖2, ‖v1‖2‖v3‖2‖w2‖2)
×msgn(−‖v2‖2‖w1‖2‖w3‖2, ‖v2‖2‖v3‖2‖w1‖2) = 1.

We left the proof of the msgn equality as an easy exercise for readers. ¤

As is shown in Theorem 4.14, we also similarly induce the sine law on Sn
H

or Sn
S (easy check). Therefore we can conclude the following theorem.

Theorem 4.16. For a given triangle in Sn
H (resp. Sn

S), the triangle satisfies
the hyperbolic (resp. spherical) sine law as in Theorem 4.15.

4.3. Applications for hyperbolic polygons

a

2
i
π

-ai

A

Ai

2
i
π

2
i
π

2
i
π

Fig . 12

There are many formulas for Lambert quadrilaterals and pentagons and
hexagons, and these were shown by an unified method which starts from a
rectangular hexagon in Fenchel’s book [8]. Also the above general version of
cosine laws and sine law also induce those formulas about all polygons which
was mentioned in [8]. Readers can notice that our interpretation gives an easy
and natural way to understand.

Here we only need the definition of angle and the fact that the distance
between x and x⊥ is π

2 i (see Fig. 12). Also it is convenient to remember that

sin ix = i sinh x, sinh ix = i sin x, sinh(x + πi) = − sinh x, sinh(x +
π

2
i) = i cosh x,
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cos ix = coshx, cosh ix = cos x, cosh(x + πi) = − cosh x, cosh(x +
π

2
i) = i sinhx.

Now we examine four special cases. At first consider a quadrilateral with
consecutive two right angles shown in Fig. 13 below. We know that the lengths
between 1,2 and 2,3 and 3,1 are a+ π

2 i, c and b+ π
2 i respectively, and the angles

at 1, 2 and 3 are −di, B and A.

1

2

3
4

5

b

c

A

a

d

B

Fig . 13

From the cosine law for a triangle (1,2,3), we obtain formulas:

cos(−di)=
cosh(a + π

2 i) cosh(b + π
2 i)− cosh c

sinh(a + π
2 i) sinh(b + π

2 i)
→ cosh d=

sinh a sinh b + cosh c

cosh a cosh b
,

cosA=
cosh c cosh(b + π

2 i)− cosh(a + π
2 i)

sinh c sinh(b + π
2 i)

→ cos A =
cosh c sinh b− sinh a

sinh c cosh b
.

Also the dual cosine law induces

cosh(a +
π

2
i) =

cos B cos(−di) + cos A

sin B sin(−di)
→ sinh a =

cos B cosh d + cosA

sin B sinh d
,

cosh c =
cos A cosB + cos(−di)

sin A sin B
→ cosh c =

cosA cos B + cosh d

sinA sin B
.

And the sine law implies

sinh(a + π
2 i)

sin A
=

sinh(b + π
2 i)

sin B
=

sinh c

sin(−di)
→ cosh a

sin A
=

cosh b

sin B
=

sinh c

sinh d
.

A rectangular hyperbolic hexagon can be perceived as a truncated triangle
(see Fig. 14). So the triangle has lengths a + πi, b + πi and c + πi, and angles
−Ai,−Bi and −Ci.
From the cosine law and dual cosine law, we get

cosh C =
cosh a cosh b + cosh c

sinh a sinh b

and

cosh c =
cosh A coshB + cosh C

sinhA sinhB
.
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The sine law shows
sinh a

sinhA
=

sinh b

sinhB
=

sinh c

sinh C
.

1
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4
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b
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Fig . 15

A hyperbolic quadrilateral with two opposite rectangular angles also can be
applicable (see Fig. 15). We know that

13 = a +
π

2
i, 35 = b +

π

2
i, 15 = 16 + 57− 67 =

π

2
i +

π

2
i−Bi,

and

∠1 = −i · 26 = −i(d +
π

2
i) =

π

2
− di, ∠5 =

π

2
− ci, ∠3 = A.

Hence by generalized hyperbolic cosine and sine laws, we get

cosA =
sinh a sinh b− cos B

cosh a cosh b
.

sinh a =
cos A sinh d + sinh c

sin A cosh d
,

sin B

sin A
=

cosh a

cosh c
=

cosh b

cosh d
.
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1

2

3
4

5

Fig . 16

Even in a self intersecting quadrilateral (see Fig. 16), we can apply the
generalized hyperbolic trigonometry. From the general triangle 4(1, 2, 3), we
will get the trigonometry of the quadrilateral (1, 2, 5, 4).

One can easily examine the other formulas for various hyperbolic polygons
in the similar way.

4.4 Applications for de Sitter polygons

-ai

2

π

2

π

-ai 2

π

2

π
A

A

Fig . 17

The generalized spherical cosine and sine laws can be used for the polygons
on Sn

1 . So we can get many formulas for polygons on Sn
1 by the similar way of

§4.3, those formulas are not unknown yet as I know. Especially for a triangle
contained in Sn

1 , Dzan [7] also induced the same spherical type cosine and sine
laws.

First, we need the basic facts about lengths and angles: The distance be-
tween x and x⊥ is π

2 , and the angle ∠(xp, yp) is dS(x, y) (see Fig. 17). We have
to define a timelike (resp. spacelike) edge as the geodesic edge whose tangent
vector is timelike (resp. spacelike) vector, then we know that a time edge inside
of the Lorentzian part has positive pure imaginary length and a space edge has
positive real length on the extended de Sitter space (see Convention 2.4).

Now we examine the two cases. First one is a Lambert quadrilateral shown
in Fig. 18. We know that the lengths between 1,2 and 1,3 and 2,3 are ai + π

2
and ci + π

2 and d respectively, and the angles at 1,2 and 3 are b, π
2 and φ. Here

φ is a complex number and all the others are positive real numbers. From the
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spherical cosine law for a right triangle (1,2,3), we obtain three formulas

(13)

cos b =
sinh a sinh c + cos d

cosh a cosh c
,

cos φ = −i
sinh a− sinh c cos d

cosh c sin d
,

sinh c = cos d sinh a.

Also the spherical dual cosine law induces

(14) cos b = cos d sin φ, cos φ = −i sinh a sin b, and sinh a = i cot b cot φ.

The formulas (13) and the middle one of (14) induce the inequality sinh a >
sinh c cos d. And the sine law gives us

sin d

sin b
= cosh c =

cosh a

sin φ
.

A pentagon with four right angles in the de Sitter space can be perceived
as a truncated triangle (see Fig. 19). From the figure, the triangle (1,2,3) has
three side of lengths ai+ π

2 , ei+ π
2 and ci+π and three angles φ, b and d. Here

φ is a complex number and all the others are positive real numbers. So we get
six formulas from the spherical cosine and dual cosine laws.

1

2 3

b

ea

d

ii

φ

c i

Fig . 19



TRIGONOMETRY 1127

They are

(15)

cos b =
sinh a cosh c + sinh e

cosh a sinh c
,

cos d =
sinh e cosh c + sinh a

cosh e sinh c
,

cosφ =
sinh a sinh e− cosh c

cosh a cosh e
,

and

(16)

− cosh c =
cos b cos d + cos φ

sin b sin d
,

−i sinh a =
cos b cos φ + cos d

sin b sin φ
,

−i sinh e =
cos d cos φ + cos b

sin d sin φ
.

We can easily show that the angle b and d are smaller than π
2 , so we get

cos b, cos d > 0. Then from the first formula of (16), we have cosφ < 0, so the
third formula of (15) gives us an inequality, sinh a sinh e < cosh c. And the sine
law implies

−i
sinh c

sin φ
=

cosh e

sin b
=

cosh a

sin d
.

Readers can easily induce the trigonometry formula for some de Sitter poly-
gons with six variables of lengths and angles and the others rectangular angles
by the similar way.

4.5 Three dimensional application

Let’s consider the following well-known tangent law (see [9]) for the hyper-
bolic orthoscheme as a three dimensional application for Theorems 4.13 and
4.15.

(17) tanh a tanα = tanh b cot β = tanh c tan γ =

√
cos2 β − sin2 α sin2 γ

cos α cos γ
,

where α, β, γ denote the dihedral angles and all the other dihedral angles are
π
2 , and 12 = a, 14 = b, 34 = c (see Fig. 20).

A general position orthoscheme in the extended hyperbolic space has triangle
faces lying on the extended space and dual triangles which are obtained by the
intersection of the extensions of three faces and the dual plane at the common
point of the three faces. Then four facial triangles and four dual triangles are
lying on the extended hyperbolic space, so we can apply Theorem 4.13 and
4.15, i.e., extended hyperbolic trigonometry. From the general trigonometry
on the general position orthoscheme, we easily induce the following relations:

(18) tanh2 a tan2 α = tanh2 b cot2 β = tanh2 c tan2 γ =
cos2 β − sin2 α sin2 γ

cos2 α cos2 γ
.
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Fig . 20

We need one more process from the formula (18) to the formula (17). Maybe
there exists a msgn technique proof (see §4.1, 4.2) at the last step, however we
prove the step by some elementary method for each case. For a usual hyperbolic
orthoscheme, the positive area condition of triangles (1,2,3) and (2,3,4) induce
0 < α, γ < π

2 , and the area of (2,3,4) and the trigonometry at dual triangle at
the vertex 4 induce 0 < β < π

2 .
The acute angle property of α, β, γ and gram matrix property cos2 β −

sin2 α sin2 γ > 0 for a hyperbolic orthoscheme trivially induce the formula (17)
from the formula (18).

Fig . 21

If the vertex 1 of a hyperbolic orthoscheme (see Fig. 20) lies on the Lorentzian
part, then we can cut the orthoscheme by a dual plane 1⊥ and obtain a prism,
i.e., hyperbolic one vertex truncated orthoscheme (see Fig. 21 (i)).

Additionally one more truncation by a dual plane 4⊥ in Fig. 20, then we
obtain a hyperbolic two vertices truncated orthoscheme (see Fig. 21 (ii)).
If the edge 14 in Fig. 20 is located in the Lorentzian part, we can make a
hyperbolic Lambert cube (see Fig. 21 (iii)). Then the corresponding lengths at
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the dihedral angles α, β, γ for three polyhedra in Fig. 21 are denoted by a, b, c,
respectively.

In order to find the corresponding tangent laws for specific cases, we have
to substitute α, β, γ, a, b, c at the general formula (18) to suitable values.

The facial polygons in (i), (ii), and (iii) cases easily induce that all dihedral
angles α, β, γ are acute, so the following tangent laws are immediately induced
from the formula (18).
Case (i), by substitution a → a + π

2 i, b → b + π
2 i in (17), we obtain

coth a tan α = coth b cot β = tanh c tan γ =

√
cos2 β − sin2 α sin2 γ

cos α cos γ
.

Case (ii), by substitution a → a + π
2 i, b → b + πi, c → c + π

2 i in (17), we obtain

coth a tan α = tanh b cot β = coth c tan γ =

√
cos2 β − sin2 α sin2 γ

cos α cos γ
.

Case (iii), by substitution a → a + π
2 i, b → i(π − β), c → c + π

2 i, β → −bi in
(17), we obtain

coth a tan α = coth b tan β = coth c tan γ =

√
cosh2 b− sin2 α sin2 γ

cos α cos γ
.

Considering of the extended de Sitter space instead of the extended hyper-
bolic space, immediately we get the tangent laws for spherical orthoscheme
and spherical one vertex truncated orthoscheme and spherical Lambert cube
by substitution a, b, c → ia, ib, ic, respectively:
Case (iv), spherical orthoscheme

(19) tan a tan α = tan b cot β = tan c tan γ =

√
sin2 α sin2 γ − cos2 β

cos α cos γ
.

Case (v), spherical one vertex truncated orthoscheme

(20) − cot a tan α = − cot b cot β = tan c tan γ =

√
sin2 α sin2 γ − cos2 β

cos α cos γ
.

Case (vi), spherical Lambert cube

(21) − cot a tan α = − cot b tanβ = − cot c tan γ =

√
sin2 α sin2 γ − cos2 b

cosα cos γ
.

The formula (19) was introduced by Vinberg [1], and the formula (21) by
Derevnin and Mednykh [4], and four tangent laws in hyperbolic space by Keller-
hals [9].

Because of the non-existence of a right-angled spherical pentagon, the spher-
ical two vertices truncated orthoscheme does not exist. As we mentioned hy-
perbolic cases, the square of the three formulas (19), (20), and (21) are trivially
satisfied. To complete the proofs, we need final geometric steps such as from
(18) to (17).



1130 YUNHI CHO

The step from (20)2 to (20) is satisfied by the following condition. The
trigonometry of the facial polygons on spherical one vertex truncated ortho-
scheme easily induces 0 < a, b, c, α, β < π

2 < γ < π, hence the final step (20)2

to (20) is completed. Also the property on Lambert cube 0 < a, b, c < π
2 <

α, β, γ < π is easily induced and implies the step (21)2 to (21).
To gain the formula (19), we should show that tan a tan α, tan b cot β, tan c

tan γ, cos α cos γ have the same ± sign, i.e.,

tan a tan α ∼ tan b cot β ∼ tan c tan γ ∼ cos α cos γ.

The spherical trigonometry of triangles (1,2,3) and (2,3,4) in Fig. 20 implies
cos a ∼ cos γ and cos c ∼ cos α, and the triangle (1,3,4) and the dual spherical
triangle at 4 induce cos θ = cot β cot γ, cosx = cos θ

sin δ , cos b = cos x cos c (see Fig.
22).

Fig . 22

So we have that

cos b = cos x cos c ∼ cos θ cos c ∼ cot β cot γ cosα ∼ cos α cos β cos γ

and cos b cosβ ∼ cos α cosβ cos γ cosβ ∼ cosα cos γ. Hence the same sign prop-
erty is proved. In order to prove the formula (19) for the π

2 dihedral angles or
lengths cases, we only need the assumption of natural infinite calculation such
as ∞ · ∞ = ∞, then we can check the formula (19) for those special cases.
Therefore we can conclude the formula (19).

We proved the tangent laws for specific 7 cases in the unified way. Note that
the tangent law is important to calculate the volume. Additionally, we show
other laws which was mentioned in [4] or some papers of Mednykh’s school to
the seven cases. They showed sine-cosine laws in their papers.

Now we can explain the sine-cosine laws in the extended hyperbolic space
point of view as well. To obtain a unified proof, we only follow the same method
given in the tangent law cases. Particularly, if we know one law among the
following 21 laws, we can automatically induce other 20 laws by the substitution
rule and the symmetry of Lambert cube.

• Hyperbolic orthoscheme

cosβ

cosh b
=

sin α sin γ

cosh a cosh c
,

sin β

sinh b
=

cos α sin γ

sinh a cosh c
,

sin β

sinh b
=

sin α cos γ

cosh a sinh c
.



TRIGONOMETRY 1131

• Hyperbolic one vertex truncated orthoscheme
cosβ

sinh b
=

sin α sin γ

sinh a cosh c
,

sin β

cosh b
=

cos α sin γ

cosh a cosh c
,

sin β

cosh b
=

sinα cos γ

sinh a sinh c
.

• Hyperbolic two vertices truncated orthoscheme
cosβ

cosh b
=

sin α sin γ

sinh a sinh c
,

sin β

sinh b
=

cosα sin γ

cosh a sinh c
,

sin β

sinh b
=

sinα cos γ

sinh a cosh c
.

• Hyperbolic Lambert cube
sin α

sinh a

cosβ

cosh b

sin γ

sinh c
= 1,

cosα

cosh a

sin β

sinh b

sin γ

sinh c
= 1,

sin α

sinh a

sin β

sinh b

cos γ

cosh c
= 1.

• Spherical orthoscheme
cosβ

cos b
=

sin α sin γ

cos a cos c
,

sinβ

sin b
=

cos α sin γ

sin a cos c
,

sin β

sin b
=

sin α cos γ

cos a sin c
.

• Spherical one vertex truncated orthoscheme
cosβ

sin b
=

sin α sin γ

sin a cos c
,

sin β

cos b
=

cos α sin γ

cos a cos c
,

sin β

cos b
= − sin α cos γ

sin a sin c
.

• Spherical Lambert cube
sin α

sin a

cos β

cos b

sin γ

sin c
= −1,

cosα

cos a

sin β

sin b

sin γ

sin c
= −1,

sin α

sin a

sin β

sin b

cos γ

cos c
= −1.

Lastly we want to remark some problems. Even though the properties on
the extended space are very natural, our proof for the trigonometry is, more
or less, artificial. Hence we leave the following problem.

Problem 1. Find a natural proof for the trigonometry on the extended hy-
perbolic space or the extended de Sitter space.

We can consider a triangle area formula on the extended hyperbolic space
and the extended de Sitter space. Particularly, an area formula for a triangle
with angles A,B, C is represented by π−A−B−C on Sn

H (naturally A+B+C−π
on Sn

S) (see [2]).
If we apply the cosine law on the extended hyperbolic space to the area

formula S = π − A − B − C, then we obtain another area formula S1(a, b, c)
with three edge length variables a, b, c,

S1 = π − cos−1

(
cosh b cosh c− cosh a

sinh b sinh c

)
− cos−1

(
cosh a cosh c− cosh b

sinh a sinh c

)

− cos−1

(
cosh a cosh b− cosh c

sinh a sinh b

)
.

We already know another area formula S2(a, b, c) (see [1], there is a misprint
that is easily checked by considering a = b = c = ∞) for a triangle on the
hyperbolic space,

tan2 S2

4
= tanh

p

2
tanh

p− a

2
tanh

p− b

2
tanh

p− c

2
, where p =

a + b + c

2
.
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Two functions S1 and S2 are complex multi-valued functions on C3, and
coincide each other when the triangle lies on the hyperbolic space, i.e., have
the same value on a domain U ⊂ R3 ⊂ C3. Hence S1 and S2 coincide each
other on C3 with the same branch cuts, and so they have the same value for a
triangle on the extended hyperbolic space.

We know the principle i‖v‖S = ‖v‖H , which comes from Conventions 2.2
and 2.4, for two norms ‖v‖H and ‖v‖S of any directed tangent vector v, where
‖ · ‖H (resp. ‖ · ‖S) denotes a vector norm on the extended hyperbolic space
(resp. extended de Sitter space). So any 2-dimensional volume elements dVH

and dVS for a given point on Sn
H and Sn

S , respectively, give a natural relation
i2 · dVS = dVH .

Therefore we get an area formula for a triangle on the extended de Sitter
space as well as on the spherical space,

tan2 −S2

4
= tanh

pi

2
tanh

(p− a)i
2

tanh
(p− b)i

2
tanh

(p− c)i
2

,

i.e., tan2 S2

4
= tan

p

2
tan

p− a

2
tan

p− b

2
tan

p− c

2
, where p =

a + b + c

2
.

As a result, we can anticipate the following principle by Cho and Kim.

Problem 2. If a single or multivalued analytic formula with geometric quan-
tity variables is satisfied on the hyperbolic space, then we can obtain the cor-
responding formula on the spherical space by changing of all variables with a
principle that k-dimensional hyperbolic variable is replaced by ik× correspond-
ing k-dimensional spherical variable, for example, hyperbolic angle θ → spher-
ical angle θ and hyperbolic length l → i× spherical length l and so on.

In fact, if an n-dimensional (the highest dimension among the variables’
dimensions) analytic formula is satisfied on the n-dimensional hyperbolic space
(resp. spherical space) and if we prove that the analytic formula also holds in
the (n + 1)-dimensional extended hyperbolic space (resp. extended de Sitter
space), then Problem 2 is automatically satisfied by the comparison of the
extended hyperbolic space and the extended de Sitter space.

In the above problem, if we change the contour for the extended space, the
value ik can be replaced by (−i)k, k = 1, 2, 3, . . .. So any single-valued analytic
formula f , which comes from Problem 2, must have a symmetry for i and −i,
i.e.,

f(. . . , ik · k-dim var., . . . , in · n-dim var.)

= f(. . . , (−i)k · k-dim var., . . . , (−i)n · n-dim var.).

For hyperbolic and spherical triangles, Lobachevsky even knew the principle
for the hyperbolic and spherical trigonometry laws. And for n-dimensional
hyperbolic and spherical simplices, Vinberg [14] clarified the principle on an
analytic volume formula represented by their dihedral angles.
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