DOI QR코드

DOI QR Code

Dynamics of CO Rebinding to Protoheme in Viscous Solutions

  • Lee, Tae-Gon (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Park, Jae-Heung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Joo-Young (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Joo, Sang-Woo (Department of Chemistry, Soongsil University) ;
  • Lim, Man-Ho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Published : 2009.01.20

Abstract

We present the geminate rebinding kinetics measurements of CO to 2-methylimidazole (2-MeIm) bound ferrous protoporphyrin- IX (FePPIX) in alkaline glycerol/water mixtures at 293 K after photolysis. The kinetics was probed by monitoring the CO stretching mode using femtosecond vibrational spectroscopy. When 2-MeIm is used in excess, heme dimers that typically form in low viscosity solutions disappear as the viscosity of the solvent increases. Heme aggregates formed in low viscosity solutions turn monomeric as more 2-MeIm is added, suggesting that 6-coordinated heme, including a strong proximal histidine tends to be in the monomeric form. The vibrational band of CO in the 2-MeIM-FePPIX-CO is well described by a single Gaussian function centered at 1958 $cm^-1$ and 28 $cm^-1$ full width at half maximum. The efficiency and rate of the geminate rebinding of CO to the heme increase with viscosity of the solvent, suggesting that retention of the dissociated CO near the heme, for a longer period by the viscous solvent media, accelerates rebinding.

Keywords

References

  1. Austin, R. H.; Beeson, K. W.; Eisenstein, L.; Frauenfelder, H.; Gunsalus, I. C. Biochemistry 1975, 14, 5355-5373 https://doi.org/10.1021/bi00695a021
  2. Springer, B. A.; Sligar, S. G.; Olson, J. S.; Phillips, G. N., Jr. Chem. Rev. 1994, 94, 699-714 https://doi.org/10.1021/cr00027a007
  3. Ye, X.; Yu, A.; Georgiev, G. Y.; Gruia, F.; Ionascu, D.; Cao, W.; Sage, J. T.; Champion, P. M. J. Am. Chem. Soc. 2005, 127, 5854-5861 https://doi.org/10.1021/ja042365f
  4. Ye, X.; Lonascu, D.; Gruia, F.; Yu, A.; Benabbas, A.; Champion, P. M. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 14682-14687. 5. Lim, M.; Jackson, T. A.; Anfinrud, P. A. Nature Struct. Biol. 1997, 4, 209-214 https://doi.org/10.1038/nsb0397-209
  5. Lim, M.; Jackson, T. A.; Anfinrud, P. A. Nature Struct. Biol. 1997, 4, 209-214 https://doi.org/10.1038/nsb0397-209
  6. Traylor, T. G.; Magde, D.; Taube, D. J.; Jongeward, K. A.; Bandyopadhyay, D.; Luo, J.; Walda, K. N. J. Am. Chem. Soc. 1992, 114, 417-429 https://doi.org/10.1021/ja00028a005
  7. White, D. K.; Cannon, J. B.; Traylor, T. G. J. Am. Chem. Soc. 1979, 101, 2443-2454. https://doi.org/10.1021/ja00503a034
  8. Cao, W.; Ye, X.; Georgiev, G. Y.; Berezhna, S.; Sjodin, T.; Demidov, A. A.; Wang, W.; Sage, J. T.; Champion, P. M. Biochemistry 2004, 43, 7017-7027 https://doi.org/10.1021/bi0497291
  9. Hasinoff, B. B. Arch. Biochem. Biophys. 1981, 211, 396-402 https://doi.org/10.1016/0003-9861(81)90470-7
  10. Hill, J. R.; Cote, M. J.; Dlott, D. D.; Kauffman, J. F.; McDonald, J. D.; Steinbach, P. J.; Berendzen, J. R.; Frauenfelder, H. Springer Series Chemical Physics 1986, 46, 433-435 https://doi.org/10.1007/978-3-642-82918-5_116
  11. Miers, J. B.; Postlewaite, J. C.; Zyung, T.; Chen, S.; Roemig, G. R.; Wen, X.; Dlott, D. D. J. Chem. Phys. 1990, 93, 8771-8776 https://doi.org/10.1063/1.459265
  12. White, W. I. In The Porphyrins; Dolphin, D., Ed.; Academic: New York, 1979.
  13. Medhi, O. K.; Mazumdar, S.; Mitra, S. Inorg. Chem. 1989, 28, 3243-3248 https://doi.org/10.1021/ic00315a033
  14. Simplicio, J.; Schwenzer, K. Biochemistry 1973, 12, 1923-1929 https://doi.org/10.1021/bi00734a014
  15. Beece, D.; Eisenstein, L.; Frauenfelder, H.; Good, D.; Marden, M. C.; Reinisch, L.; Reynolds, A. H.; Sorensen, L. B.; Yue, K. T. Biochemistry 1980, 19, 5147-5157 https://doi.org/10.1021/bi00564a001
  16. Moore, J. N.; Hansen, P. A.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 5062-5066 https://doi.org/10.1073/pnas.85.14.5062
  17. Adachi, S.; Sunohara, N.; Ishimori, K.; Morishima, I. J. Biol. Chem. 1992, 267, 12614-12621
  18. Ansari, A.; Berendzen, J.; Braunstein, D. K.; Cowen, B. R.; Frauenfelder, H.; Hong, M. K.; Iben, I. E. T.; Johnson, J. B.; Ormos, P.; Sauke, T. B.; Scholl, R.; Schulte, A.; Steinbach, P. J.; Vittitow, J.; Young, R. D. Biophys. Chem. 1987, 26, 337-355 https://doi.org/10.1016/0301-4622(87)80034-0
  19. Balasubramanian, S.; Lambright, D. G.; Boxer, S. G. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 4718-4722 https://doi.org/10.1073/pnas.90.10.4718
  20. Muller, J. D.; McMahon, B. H.; Chien, E. Y.; Sligar, S. G.; Nienhaus, G. U. Biophy. J. 1999, 77, 1036-1051 https://doi.org/10.1016/S0006-3495(99)76954-7
  21. Li, T.; Quillin, M. L.; Phillips, G. N., Jr.; Olson, J. S. Biochemistry 1994, 33, 1433-1446 https://doi.org/10.1021/bi00172a021
  22. Kim, S.; Jin, G.; Lim, M. J. Phys. Chem. B 2004, 108, 20366- 20375 https://doi.org/10.1021/jp0489020
  23. Lim, M.; Wolford, M. F.; Hamm, P.; Hochstrasser, R. M. Chem. Phys. Lett. 1998, 290, 355-362 https://doi.org/10.1016/S0009-2614(98)00533-8
  24. Hamm, P.; Kaindl, R. A.; Stenger, J. Opt. Lett. 2000, 25, 1798-1800 https://doi.org/10.1364/OL.25.001798
  25. Hamm, P.; Lim, M.; Hochstrasser, R. M. J. Phys. Chem. B 1998, 102, 6123-6138 https://doi.org/10.1021/jp9813286
  26. Henry, E. R.; Sommer, J. H.; Hofrichter, J.; Eaton, W. A. J. Mol. Biol. 1983, 166, 443-451 https://doi.org/10.1016/S0022-2836(83)80094-1
  27. Jongeward, K. A.; Magde, D.; Taube, D. J.; Marsters, J. C.; Traylor, T. G.; Sharma, V. S. J. Am. Chem. Soc. 1988, 110, 380-387 https://doi.org/10.1021/ja00210a011
  28. Lide, D. R. CRC Hanbook of Chemistry and Physics, 76th ed.; CRC Press, Inc.: 1995.
  29. Brault, D.; Rougee, M. Biochemistry 1974, 13, 4598-4602 https://doi.org/10.1021/bi00719a020
  30. Brault, D.; Rougee, M. Biochem. Biophys. Res. Commun. 1974, 57, 654-659 https://doi.org/10.1016/0006-291X(74)90596-8
  31. Rougee, M.; Brault, D. Biochemistry 1975, 14, 4100-4106. https://doi.org/10.1021/bi00689a028
  32. Vogel, K. M.; Kozlowski, P. M.; Zgierski, M. Z.; Spiro, T. G. J. Am. Chem. Soc. 1999, 121, 9915-9921 https://doi.org/10.1021/ja990042r
  33. Hamm, P. Chem. Phys. 1995, 200, 415-429 https://doi.org/10.1016/0301-0104(95)00262-6
  34. Wynne, K.; Hochstrasser, R. M. Chem. Phys. 1995, 193, 211-236 https://doi.org/10.1016/0301-0104(95)00012-D
  35. Petrich, J. W.; Poyart, C.; Martin, J. L. Biochemistry 1988, 27, 4049-4060 https://doi.org/10.1021/bi00411a022
  36. Anfinrud, P. A.; Han, C.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 8387-8391 https://doi.org/10.1073/pnas.86.21.8387
  37. Lim, M.; Jackson, T.; Anfinrud, P. In Practical Spectroscopy; Marcel Dekker, Inc.: 2001; Vol. 26, pp 191-226
  38. Kleinert, T.; Doster, W.; Leyser, H.; Petry, W.; Schwarz, V.; Settles, M. Biochemistry 1998, 37, 717-733 https://doi.org/10.1021/bi971508q
  39. Kim, J.; Park, J.; Lee, T.; Lim, M. J. Phys. Chem. B (in press)

Cited by

  1. Probing Ground-to-CT State Electronic Coupling for the System with No Apparent Charge Transfer Absorption Intensity by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy vol.115, pp.45, 2011, https://doi.org/10.1021/jp207122e
  2. Dynamics of Geminate Rebinding of NO with Cytochrome c in Aqueous Solution Using Femtosecond Vibrational Spectroscopy vol.116, pp.46, 2012, https://doi.org/10.1021/jp308468j
  3. Rebinding kinetics of dissociated amino acid ligand and carbon monoxide to ferrous microperoxidase-11 in aqueous solution vol.56, pp.2, 2013, https://doi.org/10.1007/s11426-012-4788-2
  4. Synthesis, characterization, thermal behaviour and single crystal X-ray analysis of two new insensitive high energy density materials [8-hydroxyquinolinium 5-(2,4,6-trinitrophenyl)barbiturate (I) and 8-hydroxyquinolinium 5-(5-chloro-2,4-dinitrophenyl)-1,3-dimethyl barbiturate (II)] vol.59, pp.7, 2014, https://doi.org/10.1134/S1063774514060200
  5. Rebinding dynamics of NO to microperoxidase-8 probed by time-resolved vibrational spectroscopy vol.18, pp.7, 2016, https://doi.org/10.1039/C5CP06336A
  6. Advantages of time-resolved difference X-ray solution scattering curves in analyzing solute molecular structure vol.21, pp.1, 2010, https://doi.org/10.1007/s11224-009-9521-1
  7. Picosecond Dynamics of CN--Ligated Ferric Cytochrome c after Photoexcitation Using Time-resolved Vibrational Spectroscopy vol.31, pp.12, 2009, https://doi.org/10.5012/bkcs.2010.31.12.3771
  8. Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy vol.35, pp.2, 2009, https://doi.org/10.5012/bkcs.2014.35.2.587