DOI QR코드

DOI QR Code

Rebinding Dynamics of CO Following Photodissociation of 4.0 M Guanidine HCl-Denatured Carbonmonoxyhemoglobin

  • Park, Jae-Heung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Tae-Gon (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Joo-Young (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Chowdhurry, Salina A. (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lim, Man-Ho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Published : 2009.04.20

Abstract

Femtosecond vibrational spectroscopy was used to probe the dynamics of CO rebinding to hemoglobin (Hb), denatured by 4.0 M GdnHCl in $D_2O# at 283 K, after photolysis of HbCO. The stretching mode of $^{13}CO$ bound to the denatured $Hb^{13}CO$ showed a single band centered at 1922 $cm^{-1}$, indistinguishable from that of denatured $Mb^{13}CO$. Geminate rebinding of CO to the denatured Hb was accelerated more than 1000 times, suggesting that the native structure of the Hb is required to suppress efficient geminate rebinding of CO, as is the case in Mb. The geminate yield and rate for CO rebinding are almost the same in both the denatured Hb and Mb. Similarity in the equilibrium spectrum and rebinding dynamics of CO indicates that the state of the denatured Hb is very similar to that of the denatured Mb. In the denatured Hb, quaternary contact of the protein is likely severed, with the denatured protein existing as an independent subunit much like Mb.

Keywords

References

  1. Springer, B. A.; Sligar, S. G.; Olson, J. S.; Phillips, G. N., Jr. Chem. Rev. 1994, 94, 699. https://doi.org/10.1021/cr00027a007
  2. Perutz, M. F.; Fermi, G.; Luisi, B.; Shaanan, B.; Liddington, R. C. Acc. Chem. Res. 1987, 20, 309. https://doi.org/10.1021/ar00141a001
  3. Klein-Seetharaman, J.; Oikawaz, M.; Grimshaw, S. B.; Wirmer, J.; Duchardt, E.; Ueda, T.; Imoto, T.; Smith, L. J.; Dobson, C. M.; Schwalbe, H. Science 2002, 295, 1719. https://doi.org/10.1126/science.1067680
  4. Dobson, C. M.; Sali, A.; Karplus, M. Angew. Chem. Int. Ed. 1998, 37, 869.
  5. Park, J.; Kim, J.; Lee, T.; Lim, M. Biophys. J. 2008, 94, L84. https://doi.org/10.1529/biophysj.108.130641
  6. Choi, J.; Terazima, M. J. Phys. Chem. B 2002, 106, 6587. https://doi.org/10.1021/jp0256802
  7. Hargrove, M. S.; Olson, J. S. Biochemistry 1996, 35, 11310. https://doi.org/10.1021/bi9603736
  8. Moczygemba, C.; Guidry, J.; Wittung-Stafshede, P. FEBS Lett. 2000, 470, 203. https://doi.org/10.1016/S0014-5793(00)01319-3
  9. Adachi, S.; Sunohara, N.; Ishimori, K.; Morishima, I. J. Biol. Chem. 1992, 267, 12614
  10. Ansari, A.; Berendzen, J.; Braunstein, D. K.; Cowen, B. R.; Frauenfelder, H.; Hong, M. K.; Iben, I. E. T.; Johnson, J. B.; Ormos, P.; Sauke, T. B.; Scholl, R.; Schulte, A.; Steinbach, P. J.; Vittitow, J.; Young, R. D. Biophys. Chem. 1987, 26, 337. https://doi.org/10.1016/0301-4622(87)80034-0
  11. Balasubramanian, S.; Lambright, D. G.; Boxer, S. G. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 4718. https://doi.org/10.1073/pnas.90.10.4718
  12. Muller, J. D.; McMahon, B. H.; Chien, E. Y.; Sligar, S. G.; Nienhaus, G. U. Biophys. J. 1999, 77, 1036. https://doi.org/10.1016/S0006-3495(99)76954-7
  13. Li, T.; Quillin, M. L.; Phillips, G. N., Jr.; Olson, J. S. Biochemistry 1994, 33, 1433. https://doi.org/10.1021/bi00172a021
  14. Kim, S.; Jin, G.; Lim, M. J. Phys. Chem. B 2004, 108, 20366. https://doi.org/10.1021/jp0489020
  15. Lim, M.; Wolford, M. F.; Hamm, P.; Hochstrasser, R. M. Chem. Phys. Lett. 1998, 290, 355. https://doi.org/10.1016/S0009-2614(98)00533-8
  16. Hamm, P.; Kaindl, R. A.; Stenger, J. Opt. Lett. 2000, 25, 1798. https://doi.org/10.1364/OL.25.001798
  17. Hamm, P.; Lim, M.; Hochstrasser, R. M. J. Phys. Chem. B 1998, 102, 6123. https://doi.org/10.1021/jp9813286
  18. Alben, J. O.; Caughey, W. S. Biochemistry 1968, 7, 175. https://doi.org/10.1021/bi00841a022
  19. Cupane, A.; Leone, M.; Militello, V. Biophys. Chem. 2003, 104, 335. https://doi.org/10.1016/S0301-4622(03)00002-4
  20. Franzen, S. J. Am. Chem. Soc. 2002, 124, 13271. https://doi.org/10.1021/ja017708d
  21. Merchant Kusai, A.; Noid, W. G.; Akiyama, R.; Finkelstein Ilya, J.; Goun, A.; McClain Brian, L.; Loring Roger, F.; Fayer, M. D. J. Am. Chem. Soc. 2003, 125, 13804. https://doi.org/10.1021/ja035654x
  22. Phillips, G. N., Jr.; Teodoro, M. L.; Li, T.; Smith, B.; Olson, J. S. J. Phys. Chem. B 1999, 103, 8817. https://doi.org/10.1021/jp9918205
  23. Esquerra, R. M.; Jensen, R. A.; Bhaskaran, S.; Pillsbury, M. L.; Mendoza, J. L.; Lintner, B. W.; Kliger, D. S.; Goldbeck, R. A. J. Biol. Chem. 2008, 283, 14165. https://doi.org/10.1074/jbc.M709710200
  24. Yang, F.; Phillips, G. N., Jr. J. Mol. Biol. 1996, 256, 762. https://doi.org/10.1006/jmbi.1996.0123
  25. Zhu, L.; Sage, J. T.; Rigos, A. A.; Morikis, D.; Champion, P. M. J. Mol. Biol. 1992, 224, 207 https://doi.org/10.1016/0022-2836(92)90584-7
  26. Marti, D. N. Biophys. Chem. 2005, 118, 88. https://doi.org/10.1016/j.bpc.2005.06.011
  27. Hamm, P. Chem. Phys. 1995, 200, 415. https://doi.org/10.1016/0301-0104(95)00262-6
  28. Wynne, K.; Hochstrasser, R. M. Chem. Phys. 1995, 193, 211. https://doi.org/10.1016/0301-0104(95)00012-D
  29. Petrich, J. W.; Poyart, C.; Martin, J. L. Biochemistry 1988, 27, 4049. https://doi.org/10.1021/bi00411a022
  30. Anfinrud, P. A.; Han, C.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 8387. https://doi.org/10.1073/pnas.86.21.8387
  31. Lim, M.; Jackson, T.; Anfinrud, P. Time-resolved infrared studies of ligand dynamics in heme proteins in Practica Spectroscopy; 2001; Vol. 26, pp 191.
  32. Henry, E. R.; Sommer, J. H.; Hofrichter, J.; Eaton, W. A. J. Mol. Biol. 1983, 166, 443. https://doi.org/10.1016/S0022-2836(83)80094-1
  33. Jackson, T. A. Probing the Dynamics of Ligand Motion in Myoglobin and Hemoglobin Using Time-Resolved Mid-IR Spectroscopy. Ph.D. thesis, Harvard University, 1996.

Cited by

  1. Advantages of time-resolved difference X-ray solution scattering curves in analyzing solute molecular structure vol.21, pp.1, 2010, https://doi.org/10.1007/s11224-009-9521-1