DOI QR코드

DOI QR Code

Deposition of CuInSe2 Thin Films Using Stable Copper and Indium-selenide Precursors through Two-stage MOCVD Method

  • Published : 2009.04.20

Abstract

Highly polycrystalline copper indium diselenide (CuInSe2, CIS) thin films were deposited on glass or ITO glass substrates by two-stage metal organic chemical vapor deposition (MOCVD) at relatively mild conditions, using Cuand In/Se-containing precursors. First, pure Cu thin film was prepared on glass or ITO glass substrates by using a single-source precursor, bis(ethylbutyrylacetate)copper(II) or bis(ethylisobutyrylacetato)copper(II). Second, on the resulting Cu films, tris(N,N-ethylbutyldiselenocarbamato)indium(III) was treated to produce CuInSe2 films by MOCVD method at 400 ${^{\circ}C}$. These precursors are very stable in ambient conditions. In our process, it was quite easy to obtain high quality CIS thin films with less impurities and uniform thickness. Also, it was found that it is easy to control the stoichiometric ratio of relevant elements on demands, leading to Cu or In rich CIS thin films. These CIS films were analyzed by XRD, SEM, EDX, and Near-IR spectroscopy. The optical band gap of the stoichiometric CIS films was about 1.06 eV, which is within an optimal range for harvesting solar radiation energy.

Keywords

References

  1. Jaffe, J. E.; Zunger, A. Phys. Rev. B 1984, 29, 1882. https://doi.org/10.1103/PhysRevB.29.1882
  2. DiSalvo, F. J. Science 1991, 247, 649. https://doi.org/10.1126/science.247.4943.649
  3. Goetzberge, A.; Hebling, C.; Schock, H. W. Mater. Sci. Eng. R 2003, 40, 1. https://doi.org/10.1016/S0927-796X(02)00092-X
  4. Ramanathan, K.; Contreras, M. A.; Perkins, C. L.; Asher, S.; Hasoon, F. S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R.; Ward, J.; Duda, A. Prog. Photovolt: Res. Appl. 2003, 11, 225. https://doi.org/10.1002/pip.494
  5. Contreras, M. A.; Ramanathan, K.; AbuShama, J.; Hasoon, F.; Young, D. L.; Egaas, B.; Noufi, R. Prog. Photovolt: Res. Appl. 2005, 13, 209. https://doi.org/10.1002/pip.626
  6. Stolt, L.; Hedstrom, J.; Kessler, J.; Ruckh, M.; Velthaus, K.; Schock, H. W.; Appl. Phys. Lett. 1993, 62, 597. https://doi.org/10.1063/1.108867
  7. Sudo,Y.; Endo, S.; Irie, T. Jpn. J. Appl. Phys. 1993, 32, 1562. https://doi.org/10.1143/JJAP.32.1562
  8. Silva, K. T. L. D.; Priyantha, W. A. A.; Jayanetti, J. K. D. S.; Chithrani, B. D.; Siripala, W.; Blake, K.; Dharmadasa, I. M. Thin Solid Films 2001, 382, 158. https://doi.org/10.1016/S0040-6090(00)01185-8
  9. Alverts, V.; Schon, J. H.; Bucher E. Mater. Sci.: Mater. Electron. 1999, 10, 469. https://doi.org/10.1023/A:1008905731532
  10. Salviati, G.; Seuret, D. Thin Solid Films 1983, 104, 75. https://doi.org/10.1016/0040-6090(83)90586-2
  11. Noufi, R.; Mason, A.; Franz, A. Thin Solid Films 1991, 202, 299. https://doi.org/10.1016/0040-6090(91)90101-3
  12. Parkes, J.; Tomlinson, R. D.; Hampshire, M. J. J. Appl. Cryst. 1973, 6, 414. https://doi.org/10.1107/S0021889873009027
  13. Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: New York, 1974.
  14. Moharram, A. H.; Al-Mekkawy, I. M.; Salem, A. Appl. Surf. Sci. 2002, 191, 85. https://doi.org/10.1016/S0169-4332(02)00154-X
  15. Arraud, M. C.; Ouchen, F.; Martin, L.; Duchemin, S. Thin Solid Films 1998, 311, 115.
  16. Subbaramaiah, K.; Raja, V. S. Thin Solid Films 1992, 208, 247. https://doi.org/10.1016/0040-6090(92)90651-Q
  17. Shirakata, S.; Terasako, T.; Kariya, T. J. Phys. Chem. Solids 2005, 66, 1970. https://doi.org/10.1016/j.jpcs.2005.09.091
  18. Beck, M. E.; Cocivera, M. Thin Solid Films 1996, 272, 71. https://doi.org/10.1016/0040-6090(95)06075-8
  19. Zouaoui, A.; Lachab, M.; Hidalgo, M. L.; Chaffa, A.; Llinares, C.; Kesri, N. Thin Solid Films 1999, 339, 10. https://doi.org/10.1016/S0040-6090(98)00893-1
  20. Tuttle, J. R.; Albin, D. S.; Noufi, R. Sol. Cells 1991, 30, 21. https://doi.org/10.1016/0379-6787(91)90034-M
  21. Akl, A. A. Ph.D. Thesis, El-Minia University, Egypt, 1997.
  22. Hasan, S. M. F.; Subhan, M. A.; Mannan, K. M. Opt. Mater. 2000, 14, 329. https://doi.org/10.1016/S0925-3467(00)00006-9
  23. Isomura, T.; Kariya, T.; Shirakata, S. Cryst. Res. Technol. 1996, 31, 523.
  24. Gurin, V. S. Colloids Surf. A 1998, 142, 35. https://doi.org/10.1016/S0927-7757(98)00407-5
  25. McAleese, J.; O'Brien, P.; Otway, D. J. Mater. Res. Soc. Symp. Proc. 1998, 485, 157.
  26. Yoon, S. H.; Seo, K. W.; Lee, S. S.; Shim, I. W. Thin Solid Films 2006, 515, 1544. https://doi.org/10.1016/j.tsf.2006.04.054
  27. Artaud, M.; Ouchen, C. F.; Martin, L.; Duchemin, S. Thin Solid Films 1998, 324, 115. https://doi.org/10.1016/S0040-6090(98)00349-6
  28. Kim, K. S.; Jeong, H. C.; Cho, J. Y.; Kang, D. H.; Kim, H. K.; Yoo, H. M.; Shim, I. W. Bull. Korean Chem. Soc. 2003, 24, 647. https://doi.org/10.5012/bkcs.2003.24.5.647
  29. Lee, S. S.; Seo, K. W.; Shim, I. W. Bull. Korean Chem. Soc. 2006, 27, 147. https://doi.org/10.5012/bkcs.2006.27.1.147
  30. Rosenbaum, V. A.; Kirchberg, H.; Leibnitz, E. Jounal fur Praktische Chemie 1963, 19, 1. https://doi.org/10.1002/prac.19630190101
  31. JCPDS Cards No. 04-0836.
  32. JCPDS Cards No. 23-0294.
  33. JCPDS cards No. 40-1487.
  34. Alaa, A.; Akl, A.; Afify, H. H. Mater. Res. Bull. 2008, 43, 1539. https://doi.org/10.1016/j.materresbull.2007.06.018
  35. Sheppard, C. J.; Alberts, V.; Bekker, W. J. Phys. Stat. Sol. (a) 2004, 201, 2234. https://doi.org/10.1002/pssa.200404817

Cited by

  1. Influence of Capping Ligand and Synthesis Method on Structure and Morphology of Aqueous Phase Synthesized CuInSe2 Nanoparticles vol.46, pp.1, 2017, https://doi.org/10.1007/s11664-016-4906-6
  2. Infrared Spectroscopic Study of α-Cyano-4-hydroxycinnamic Acid on Nanocrystalline TiO2 Surfaces: Anchoring of Metal-Free Organic Dyes at Photoanodes in Dye-Sensitized Solar Cells vol.31, pp.1, 2009, https://doi.org/10.5012/bkcs.2010.31.01.116