Two New Lignans from the Bark of Zanthoxylum planispinum

Yun Hu, Yu Chen, Yue Shang, and Guangzhong Yang*
Laboratory for Vatural Product Chemistry, College of Pharmacy, South Central Unwersity for Nationalities, Huhan +3007t. P. R. China. "E-mail: vanggz888क126.com
Recewed February 15, 2009, Accepted June 24, 2009

Key Words: Zanthoxylum planispinum. Lignan. Planispine A and B

Zanthoxylum planispinum Sieb. et Zucc. has been widely used as a folk medicine for clearing away cold. preventing toothache and expelling roundworms. ${ }^{1}$ Chemical constituents of Zanthoxy/um have been studied extensively. Previous phytochemical investigations on this species revealed that benzophenanthridine alkaloids. ${ }^{2}$ coumarins. ${ }^{3}$ amides ${ }^{+}$and lignans ${ }^{5}$ are largely represented in this genus. Chemical studies of the bark of this plant have never been conducted previously. As continuation of our chemical studies of ethnomedicinal plants. ${ }^{6}$ we have investigated the bark of Z. planispinum and reported herein the isolation and structure elucidation of two new furofuran lignans planispine A (1) and B (2). Their structures were established on the basis of various spectroscopic analy'ses including ID-(${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and DEPT) and 2D-NMR (HSQC. HMBC and ROESY) techniques and by comparison of their spectral data with those of related compounds.

Compound 1 was isolated as colorless oil. Its molecular formular was established as $\mathrm{C}_{25} \mathrm{H}_{310} \mathrm{O}_{6}$ (mz $2+49.1942[\mathrm{M}+\mathrm{Na}]^{-}$, calcd for $\$ 49.1940$) on the basis of its HR-ESI-MS analyses. The ${ }^{1} \mathrm{H}$ NMR spectrum showed two CH group at $\hat{\delta}_{\mathrm{H}} 2.8+^{\circ}(\mathrm{IH}$. $\mathrm{m})$ and $3.39(1 \mathrm{H} . \mathrm{m})$. wo benzylic OCH moieties at $\hat{\delta}_{\mathrm{H}} 4.38$ $(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$ and $+83(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz})$, wo oxy genated CH_{2} group at $\delta_{\mathrm{H}}+11(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz})$ and $3.82(1 \mathrm{H}, \mathrm{m})$. $3.78(1 \mathrm{H} . \mathrm{m})$ and $3.24(\mathrm{IH}$. dd. $J=8.7 .8 .7 \mathrm{~Hz})$. six aromatic

Figure 1. Their structures of compounds 1 and 2.
protons as two ABX systems at $\hat{\delta}_{\mathrm{H}} 6.79-6.95$ indicating the presence of two 1.2.4-trisubstituted benzene rings. in addition to two methoxy groups at $\delta_{\mathrm{H}} 3.80,3.83$ (each $3 \mathrm{H}, \mathrm{s}$). one hydroxy group at $\hat{\delta}_{\mathrm{H}} 7.53$ ($1 \mathrm{H} . \mathrm{s}$). and one prenyloxy group at $\delta_{\mathrm{H}} 4.53(2 \mathrm{H} . \mathrm{d}, J=6.7 \mathrm{~Hz}) .5 .47(1 \mathrm{H} . \mathrm{t}, J=6.7 \mathrm{~Hz}) .1 .72(3 \mathrm{H}$. s). $1.75(3 \mathrm{H}, \mathrm{s})$. Accordingly compound 1 was assigned to be a lignan of the furofuran type bearing one hydrosy, two methosy and a prenylosy group. ${ }^{56,7}$ This assumption was further supported by the ${ }^{15} \mathrm{C}$ NMR signal including $2 \times \mathrm{CH}$ ($\hat{\mathrm{o}}$: 55.3 and 50.5). $2 \times$ benzylic $\mathrm{OCH}(8.88 .0$ and 82.3), $2 \times$ oxygenated $\mathrm{CH}_{2}\left(\hat{o}_{-} 71.1\right.$ and 69.8$), 6 \times$ aromatic C and $6 \times$ aromatic CH . The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data of compound 1 was similar to that of epipinoresinol. ${ }^{8}$ suggesting one hydroxy of epipinoresinol was replaced by a prenyloxy group in $\mathbf{1}$ which was supported by MS fragments at $m z 358\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{8}\right)$ and $69\left(\mathrm{C}_{5} \mathrm{H}_{9}\right)$. In HMBC spectrum. the correlations of $\tilde{\delta}_{\mathrm{H}} 7.53$ $(\mathrm{s} . \mathrm{OH}) / \mathrm{C}-3^{\prime}\left(\delta_{\mathrm{C}} \mathrm{C} 147.7\right), \mathrm{C}-4^{\prime}\left(\delta_{C} \mathrm{C} 14.9\right)$ and $\mathrm{C}-5^{\prime}\left(\mathrm{o}_{\mathrm{C}} \mathrm{l} 113.9\right)$, $\hat{\delta}_{\mathrm{H}} 3.80\left(\mathrm{~s}^{2} \mathrm{OCH}_{3}\right) / \mathrm{C}-3\left(\hat{\delta}_{\mathrm{E}} 150.4\right)$. $\mathrm{o}_{\mathrm{H}} 3.83\left(\mathrm{~s} . \mathrm{OCH}_{2}\right) / \mathrm{C}-3^{\prime}$ and $\delta_{\mathrm{H}} \mathrm{H}_{2}-1^{\prime \prime} / \mathrm{C}-+\left(\delta_{\mathrm{C}} 148.5\right)$ indicated that two methosy. one hydroxy and one prenylosy groups were located at C-3. C-3', C-4' and C-4 respectively. Furthermore the ROESY spectrum allowed us to confirm the position of the methosy group, showing that both methoxyl signal at $\hat{\delta}_{\mathrm{H}} 3.80$ and 3.83 can correlate with $\mathrm{H}-2$ and $\mathrm{H}-2^{\prime}$ respectively. The relative configuration of 1 was determined on the basis of a ROESY experiment (see Fig. 2). Although compound 1 exhibited the same NMR data as (+)-epipinoresinol ${ }^{3 \mathrm{a}}\left([\alpha]_{\mathrm{D}}=+79\right.$ (c 0.1 , MeOH), which has the absolute configuration $7 \mathrm{~S}_{1} 7^{\prime} R, 8 R, 8^{\prime} R$. its optical rotation was opposite. Accordingly. the absolute configuration was assigned as $7 R, 7^{\prime} \mathrm{S}, 8 \mathrm{~S}, 88^{\prime} \mathrm{S}$. Thus. the structure of 1 was established as $(-)-\left(7 \beta, 7^{\prime} \alpha, 8 \beta, 8^{\prime} \beta\right)-3,3^{\prime}-$ dimethoxy-4-prenyloxy -7.9':7',9-dieposylignan-4'-ol with

Figure 2. Key NOE correlations for compound 1.
($7 R, 7^{\prime} \mathrm{S}, 8 \mathrm{~S}, 8^{\prime} \mathrm{S}$), named as planispine A .
Compound 2 was obtained as colorless oil. and had a molecular formular $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{6}$ from the positive HR-ESI-MS (mz $\mathbf{5 1 7 . 2 5 5 6}[\mathrm{M}+\mathrm{Na}]^{+}$. calcd for 517.2566). Most of the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR signals of 2 were similar to those of $\mathbf{1}$. The major spectroscopic differences between them as followed: i) the presence of a geranyloxy group in $\mathbf{2}$. instead of preny loxy group in the former: ii) more downfield shifted for $\mathrm{C}-7^{\prime}$ (δ_{c} 86.1). C-8 ($\delta_{0} 54.9$). C-9' ($\delta_{0} .71 .9$) and C-1' ($\delta<135.1$): iii $)$ Small coupling constants were observed for $\mathrm{H}-7(J=+.5 \mathrm{~Hz})$ and $\mathrm{H}-7^{\prime}(J=4.2 \mathrm{~Hz})$. All over the data suggested the structure of compound 2 was similar to that of pinoresinol. ${ }^{9}$ except one hydroxy of pinoresinol replaced by a geranyloxy group in 2 which was supported by MS fragments at $m z 358\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{16}\right)$ and $137\left(\mathrm{C}_{10} \mathrm{H}_{17}\right)$. The substitued pattern was unambiguously confirmed by HMBC data. Correlations were obened between $\hat{\delta}_{\mathrm{H}} 7.58(\mathrm{~s} . \mathrm{OH}) / \mathrm{C}-3^{\prime}\left(\hat{o}_{\mathrm{C}} \mathrm{C} 14.9\right), \mathrm{C}-4^{\prime}\left(\hat{\mathrm{o}}_{\mathrm{C}} 146.5\right)$ and $\mathrm{C}-5^{\prime}\left(\hat{\delta}_{\mathrm{C}}\right.$ $115.2), \delta_{\mathrm{H}} 3.81\left(\mathrm{~s} . \mathrm{OCH}_{3}\right) / \mathrm{C}-3\left(\delta_{\mathrm{C}} \mathrm{C} 150.4\right)$. $\delta_{\mathrm{H}} 3.84\left(\mathrm{~s}, \mathrm{OCH}_{3}\right) /$ $\mathrm{C}-3^{\prime}$ and $\mathrm{H}_{2}-\mathrm{I}^{\prime \prime} / \mathrm{C}-4$ (or 148.4), confirming two methoxy, one hydroxy and one gerany loxy groups were located at C-3. C-3'. $\mathrm{C}-4^{\prime}$ and $\mathrm{C}-4$ respectively. Furthermore. the ROESY spectrum allowed us to confirm the position of the methony group. showing that both methosyl signal at $\dot{\delta}_{\mathrm{H}} 3.81$ and 3.84 can correlate with $\mathrm{H}-2$ and $\mathrm{H}-2^{\prime}$ respectively. The relative configuration of 2 was determined on the basis of a ROESY

Figure 3. Key NOE correlations for compound 2.
experiment (see Fig. 3). On the basis of levorotatory nature and relative configuration, the absolute configuration of 2 must be the same as that of (-)-pinoresinol monomethyl ether ${ }^{8_{3}}\left([\alpha]_{D}=-58(\mathrm{c} 0.05, \mathrm{EtOH})\right)$. Therefore. the structure of 2 was established as $(-)-\left(7 \beta, 7^{\prime} \beta, 8 \beta .8^{\prime} \beta\right)$-3. 3^{\prime}-dimethory-4gerany loxy-7. 9^{\prime} : 7^{\prime}. 9-diepoxylignan- 4^{\prime}-ol with ($7 R, 7^{\prime} R .8 S$, $\left.8^{\prime} \mathrm{S}\right)$. named as planispine B

Experimental Section

Reagent and equipment. Thin-layer clromatography (TLC): Pre-coated silica gel $G F_{254}$ plates (Oingdao Haivang Chemical

Table 1. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC data of compound 1 and 2 in acetone

position	1			2		
	${ }^{1} \mathrm{H}-\mathrm{NMR}$	${ }^{13} \mathrm{C}-\mathrm{NMR}$	HMBC	${ }^{1} \mathrm{H}-\mathrm{NMR}$	${ }^{13} \mathrm{C}-\mathrm{NMR}$	HMBC
1		135.2 (s)			133.7 (s)	
2	6.99 (d, 2.4)	110.5 (d)	C-1, $3,4,6,7$	$6.98(\mathrm{~d}, 1.5)$	110.2 (d)	
3		150.4 (s)			150.4 (s)	
4		148.5 (s)			148.4 (s)	
5	6.79-6.85 (m)	115.1 (d)		6.85 (m)	114.0 (d)	
6	6.82-6.92 (m)	118.7 (d)		6.84 (m)	118.6 (d)	
7	4.38 (d, 7.2)	88.0 (d)	C-1, 2, 6, 8,9	4.67 (d, 4.5)	86.2 (d)	C-2,6,8,9
8	2.84 (m)	55.3 (d)	C-1, 7, 7, $8^{\prime}, 9^{\prime}$	3.09 (m)	54.9 (d)	
9 a	3.82 (m)	71.1 (t)		3.80 (m)	71.8 (t)	C-7, 8
9 b	4.11 (d,9.3)			4.20 (m)		
l^{\prime}		130.9 (s)			135.1 (s)	
2^{\prime}	7.00 (d, 2.4)	109.7 (d)	C-1', $3^{\prime}, 4^{\prime}, 6^{\prime}, 7^{\prime}$	$6.98(\mathrm{~d}, 1.5)$	110.7 (d)	
3		147.7 (s)			147.9 (s)	
4		145.9 (s)			146.5 (d)	
5	6.90-6.95 (m)	113.9 (d)		6.79 (m)	115.2 (d)	
6^{\prime}	6.82-6.92 (m)	118.7 (d)		6.82 (m)	119.2 (d)	
$7{ }^{\prime}$	4.83 (d, 5.7)	82.3 (d)	C-1', $2^{\prime}, 6^{\prime}, 8^{\prime}, 9^{\prime}$	4.70 (d, 4.2)	86.1 (d)	C-2', $6^{\prime}, 8^{\prime}, 9^{\prime}$
8	3.39 (m)	50.5 (d)	C-9	3.09 (m)	54.9 (d)	
$9 \times$	3.78 (m)	$69.8(\mathrm{t})$	C-7', 8^{\prime}	3.80 (m)	71.9 (t)	C-7', 8^{\prime}
9 b	3.24 (dd, 8.7, 8.7)			4.20 (m)		
I"	4.53 (d, 6.7)	65.8 (t)	C-4, $2^{\prime \prime}, 3^{\prime \prime}$	4.56 (d, 6.1)	65.9 (t)	C-4, $2^{\prime \prime}$, $3^{\prime \prime}$
$2^{\prime \prime}$	$5.47(\mathrm{t}, 6.7)$	121.0 (d)	C-4", $\mathrm{C}-5^{\prime \prime}$	5.49 (t, 6.1)	120.9 (d)	C-4", $\mathbf{5}^{\prime \prime}$
$3^{\prime \prime}$		137.1 (s)			140.4 (s)	
$4^{\prime \prime}$	1.72 (s)	17.7 (c)	C-2", ${ }^{\prime \prime}$	1.72 (s)	16.2 (9)	C-2', $3^{\prime \prime}, 5^{\prime \prime}$
5"	1.75 (s)	25.4 (q)	C-2", $3^{\prime \prime}$	2.05 (m)	39.8 (t)	C-2", $3^{\prime \prime}, 1^{\prime \prime \prime}, 2^{\prime \prime \prime}$
$1^{\prime \prime \prime}$				2.10 (m)	26.7 (t)	C-2m, $3^{\prime \prime \prime}, 5^{\prime \prime}$
$2^{\prime \prime \prime}$				5.11 (m)	124.4 (d)	C-4"', $5^{\prime \prime \prime}$
$3^{\prime \prime \prime}$					131.7 (s)	
$4^{\prime \prime \prime}$				1.65 (s)	25.5 (q)	C-2 $2^{\prime \prime}=3^{\prime \prime \prime}$
$5^{\prime \prime \prime}$				1.59 (s)	17.3 (q)	C-2"], $3^{\prime \prime \prime}$
$3-\mathrm{OCH}_{3}$	3.80 (s)	55.6 (q)	C-3	3.81 (s)	55.7 (q)	C-3
$3^{\prime}-\mathrm{OCH}_{3}$	3.83 (s)	55.8 (q)	$\mathrm{C}-3^{\prime}$	3.84 (s)	55.8 (9)	C-3'
$4^{\prime}-\mathrm{OH}$	7.53 (s)		C- $3^{\prime}, 4^{\prime}, 5^{\prime}$	7.58 (s)		C- $3^{\prime}, 4^{\prime}, 5^{\prime}$

Co.. Ltd.. P. R. China). Column Chromatography (CC): Silica gel (200-300 mesh; Oingdao Havang Chemical Co, Ltd, P. R. China) and C_{18} reversed-phase silica gel (YMC CO, LTD. Japan). HPLC: Ultimate 3000 HPLC system(Dione. Co. California. USA): Ultimate 3000 pump: Ultimate 3000 Variable Wavelength; column waters $5 \mathrm{C}_{18}-\mathrm{MS}-\mathrm{II}(10 \times 250 \mathrm{~mm})$. Optical rotation: Perkim-Elmer 341 plolarimeter (Perkin Elmer Inc., Massachusetts. USA) . ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral: BrukerA $4 / 400$ instrument (Bruker company. Massachusetts, USA) : δ in ppm rel. to SiMe4 as internal standard ($=0 \mathrm{ppm}$) , J in Hz. EI-MS: Finnigan-h 4 T-95 mass spectrometer (Finnigan companỵ: UK) (70 eV) in $m z$ (rel. \%). ESI-MS and HR-ESI-MS data was obtained form Shanghai Institute of Materia Medica. Chinese Academy of Sciences.

Plant material. The barks of Zanthoxy/um planispinum were collected from BaDong county. Hubei Province. PR China and identified by Prof. Dinrong Wan. College of Pharmacy. South Central University for Nationalities. The voucher specimen (07092701) was deposited in the Herbarium of College of Pharmacy. South Central University for Nationalities.

Extraction and isolation. The air-dried bark of Zanthoxy/um planispinum (17 kg) were powdered and then extracted three times with MeOH at room temperature. and the methanolic e.xtract (1.6 kg) was successively partitioned with petroleum ether. EtOAc and $n-\mathrm{BuOH}$. The EtOAc extract (47 g) was chromatographed on a silica gel (800 g) column ($8 \times 50 \mathrm{~cm}$) eluting with a gradient mixture of cyclohexane and acetone (cyclohexane-Me2 $\mathrm{CO} 95: 5,3 \mathrm{~L}: 9: 1.6 \mathrm{~L}: 8: 2.5 \mathrm{~L}: 7: 3,4 \mathrm{~L}$: 1:1.3 L. 0:1.3 L) to afford 8 fractions ($\mathrm{Fr} \mathrm{L}-\mathrm{Fr} 8$). Frr was further chromatographed on a silica gel column ($5 \times 70 \mathrm{~cm}$) with gradient mixture of cyclohexane and ethyl acetate (cy clohexaneEtOAc 9:1. 1.2 L; 8:2.1.5 L; 7:3. $5 \mathrm{~L}: 1: 1.2 .5 \mathrm{~L} ; 0: 1.4 \mathrm{~L}$) to give 6 subfractions (Fr6.I-Fr6.6). Fr6.3 was further purified by C18 reversed-phase silica gel column ($2 \times 50 \mathrm{~cm}$) with gradient mixture of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MeOH}\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH} 7: 3.1 \mathrm{~L}\right.$: 1:1.2 L, 3:7.6 L: 2:8, $2 \mathrm{~L} .1: 9,1 \mathrm{~L} ; 0: 1.2 \mathrm{~L}$) to afford 7 subfractions (Fr6.3.1-Fr6.3.7) Fr6.3.3 was subjected to semiprepared HPLC (MeOH/HzO $80: 20.3 \mathrm{~mL} / \mathrm{min}: \mathrm{t}_{\mathrm{R}} 3.5 \mathrm{~min}$) to afford compound 1 (20 mg). Fi6.3.6 were purified by semiprepared $\mathrm{HPLC}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 70: 30.3 \mathrm{~mL} / \mathrm{min}: \mathrm{t}_{\mathrm{R}} 46.7 \mathrm{~min}\right)$ to give compound $2(40 \mathrm{mg})$.

Planispine A (1) colorless oil, $[\alpha]_{D}=-22.3$ (c 0.35 . acetone). EIMS mz 358 (100). 205 (25). 163 (35). 151 (85). 137 (50). 131 (20) , 69 (30). HR-ESI-MS $m z 449.1942[\mathrm{M}+\mathrm{Na}]^{-}$(calculated for $\left.\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{Na} .449 .1940\right),{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table 1.

Planispine B (2) colorless oil. $[\alpha]_{\mathrm{D}}=-5.4$ (c 0.95. acetone). EIMS mz 388 (10), 358 (100). 327 (15). 205 (15). 163 (35), 151 (70). 137 (50), 131 (15), 124 (10). 69 (55), HR-ESI-MS $m z 517.2556[\mathrm{M}+\mathrm{Na}]^{-}$(calculated for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na} .517 .2566$) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table 1.

Aclanowledgments. We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (No. 30670215).

References

1. Fang. Z. X., Liao, L. C. Hubei Enshi Yaovong Zhiwuzhi, Hubei Science and Technology Press: WuHan, China, 2006: p 577.
2. Tane, P.: Wabo, H. K., Connolly, J. D. Fitoterapia. 2005, 76, 656.
3. (a) Chen, I. S.: Lin, Y. C.: Tsai, I. L.: Teng, C. M.; Ko, F. N.; Ishikawa, T.: Ishii, H Phytochemistry 1995, 39, 1091 . (b) Chang, C. T.; Doong, S. L.; Tsai, I. L.; Chen, I. S. Phytochemismy 1997, 45, 1419.
4. (a) Kalia, N. K.: Singh, B.: Sood, R. P. J. Nat. Prod. 1999, 62, 311. (b) Kashiwada, Y.: Ito, C.: Katagiri, H.: Mase, I.: Komatsu, K.: Namba, T.: Ikeshiro, Y. Phyochemistry 1997, 44, 1125.
5. (a) Ralman, M. M.: Islam, M. A.: Khondkar, P.; Gray, A. I. Biochemical Systematics and Ecologr 2005,33,91. (b) Chen, I. S.; Chen, T. L.; Chang, Y. L.: Teng, C. M.: Lin, W. Y. J. Nat. Prod. 1999, 62, 833.
6. (a) Yang, G. Z.: Li, H. X.: Song, F. I.; Chen, Y. Hehr Chim Acta 2007, 90, 1289 . (b) Zhong, F. F.: Chen, Y.; Yang, G. Z. Heth Chim Acta 2008, 91, 1695.
7. (a) Ahmed, A. A.; Mahmoud, A. A.; Ali, T. E.; Tzakou, O;: Couladis, M.: Mabry, T. I.; Gati, T.; Toth, G. Phytochemisty 2002, 59, 851. (b) Lee, H. K.; Seo, S. M.; Lee, O. K.; Jo, H. J; Kang, H. Y.; Choi, D. H.; Paik, K. H.; Khan, M. Helv Chim Acta 2008, 91, 2361.
8. (a) Zhao, Y. M. Phentpropanoids; Chemical Industry Press: Beijing, China, 2005; p 183, 186. (b) Swain, N. A.; Brown, R. C. D.; Bruton, G. J. Org. Chem. $\mathbf{2 0 0 4}, 69,123$.
9. Hosokawa, A.; Sumino, M.; Nakamura, T; Yano, S.; Sekine, T.; Ruangrungsi, N.; Watanabe, K.; Ikegami, F. Chem. Pham. Bull. $2004,52,1265$.
