DOI QR코드

DOI QR Code

Characterizations of Novel Poly(aspartic acid) Derivatives Conjugated with γ-Amino Butyric Acid (GABA) as the Bioactive Molecule

  • Kim, Seung-Il (School of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University) ;
  • Son, Chang-Mo (School of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University) ;
  • Jeon, Young-Sil (School of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University) ;
  • Kim, Ji-Heung (School of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University)
  • Published : 2009.12.20

Abstract

Novel poly(aspartic acid) derivatives conjugated with $\gamma$-amino butyric acid, GABA, moieties, and their amphiphilic analogs were synthesized and characterized. The chemical structures of these polymers were confirmed by FT-IR and $^1H$ NMR spectroscopy. Their physicochemical properties in aqueous media were characterized by electrophonetic light scattering spectrophotometry (ELS), acid-base titration, and UV-spectroscopy. In addition, the in vitro cell activity of the GABA-conjugated polymer was examined. These results indicated that GABA-conjugated poly(aspartic acid) derivatives showed cell-growth activity and nanoparticle formation of a suitable size within aqueous media. These polymers have potential application in the cosmetic and pharmaceutical fields.

Keywords

References

  1. Min, S. K.; Kim, S. H.; Kim, J. H. Journal of Industrial Engineering Chemistry 2000, 6(4), 276
  2. Giammona, G.; Pitarresi, G.; Tomarchio, V.; Spadaro, G. Colloid and Polymer Science, 1995, 273(6), 559 https://doi.org/10.1007/BF00658685
  3. Nacato, T.; Yoshitake, M.; Matsubara, K.; Tomida, M.; Kakuchi, T. Macromolecules 1998, 31(7), 2107 https://doi.org/10.1021/ma971629y
  4. Wheeler, A. P.; Kosan, L. P. Mat. Res. Soc. Symp. Proc. 1993, 292, 279
  5. Nakato, T.; Kusuno, A.; Kakuchi, A. J. Polym. Sci., Polym. Chem. 2000, 38(1), 117 https://doi.org/10.1002/(SICI)1099-0518(20000101)38:1<117::AID-POLA15>3.0.CO;2-F
  6. Masubara, K.; Nakato, T.; Tomida, M. Macromolecules. 1997, 30(8), 2305 https://doi.org/10.1021/ma961579h
  7. Kang, H. S.; Shin, M. S.; Kim, J. D.; Yang, J. W. Polymer Bulletin 2000, 45, 39 https://doi.org/10.1007/s002890070054
  8. Kang, H. S.; Yang, S. R.; Kim, J. D.; Han, S. H.; Chang, I. S. Langmuir 2001, 17, 7501 https://doi.org/10.1021/la0107953
  9. Jiang, T. Y.; Wang, Z. Y.; Tang, L. X.; Mo, F. K.; Chen, C. Journal of Applied Polymer Science 2006, 99, 2702 https://doi.org/10.1002/app.22818
  10. Jiang, T. Y.; Wang, Z. Y.; Chen, C.; Mo, F. K.; Xu, Y. L.; Tang, L. X.; Liang, J. J. Journal of Applied Polymer Science 2006, 101, 2871 https://doi.org/10.1002/app.23353
  11. Horgan, A.; Saunderd, B.; Vincent, B.; Heenan, R. K. J. Colloid Interf. Sci. 2003, 262, 548 https://doi.org/10.1016/S0021-9797(03)00239-X
  12. Zhu, G. Eur. Polym. J. 2005, 41, 2671 https://doi.org/10.1016/j.eurpolymj.2005.05.023
  13. Matsusaki, M.; Hiwatari, K.; Higashi, M.; Kaneko, T.; Akashi, M. Chemistry Letters 2004, 33(4), 398 https://doi.org/10.1246/cl.2004.398
  14. Akagi, T.; Wang, X.; Uto, T.; Masanori, B.; Akashi, M. Biomaterials 2007, 28, 3427 https://doi.org/10.1016/j.biomaterials.2007.04.023
  15. Filippov, S.; Hruby, M.; Konak, C.; Mackova, H.; Spirkova, M.; Stepanek, P. Langmuir 2008, 24, 9295 https://doi.org/10.1021/la801472x
  16. Yang, S. R.; Lee, H. J.; Kim, J. D. Journal of Controlled Release 2006, 114, 60 https://doi.org/10.1016/j.jconrel.2006.05.016
  17. Li, P.; Yin, Y. L.; Li, D.; Kim, S. W.; Wu, G. British Journal of Nutrition 2007, 98, 237 https://doi.org/10.1017/S000711450769936X
  18. Belley, M.; Sullivan, R.; Reeves, A.; Evans, J.; O'Neill, G.; Gordon, Y. K. Bioorganic & Medicinal Chemistry 1999, 7, 2697 https://doi.org/10.1016/S0968-0896(99)00214-X
  19. Goddard, J. M.; Hotchkiss, J. H. Prog. Polym. Sci. 2007, 32, 3698 https://doi.org/10.1016/j.progpolymsci.2007.04.002
  20. Khandare, J.; Tamara, M. Prog. Polym. Sci. 2006, 31, 359 https://doi.org/10.1016/j.progpolymsci.2005.09.004
  21. Kim, S. I.; Min, S. K.; Kim, J.-H. Bull. Korean Chem. Soc. 2008, 29, 1887 https://doi.org/10.5012/bkcs.2008.29.10.1887
  22. Stella, B.; Arpicco, S.; Peracchia, M. T.; Desmaele, D.; Hoebeke, J.; Renoir, M.; Dangelo, J.; Cattel, L.; Couvreur, P. Journal of Pharmaceutical Sciences 2000, 89(11), 1452 https://doi.org/10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P
  23. Stella, B.; Marsaud, V.; Arpicco, S.; Geraud, G.; Cattel, L.; Couvreur, P.; Renoir, J. M. Journal of Drug Targeting 2007, 15(2), 146 https://doi.org/10.1080/10611860600935826

Cited by

  1. Role of GABA and serotonin coupled chitosan nanoparticles in enhanced hepatocyte proliferation vol.23, pp.12, 2012, https://doi.org/10.1007/s10856-012-4754-8
  2. Bioinspired self-adhesive polymer for surface modification to improve antifouling property vol.10, pp.6, 2013, https://doi.org/10.1007/s11998-013-9528-9
  3. Kinetics of solid phase thermal polycondensation of aspartic acid in evacuated system vol.83, pp.11, 2013, https://doi.org/10.1134/S1070363213110145
  4. Bioinspired adhesive coating on PET film for antifouling surface modification vol.22, pp.2, 2014, https://doi.org/10.1007/s13233-014-2033-x
  5. vol.38, pp.1, 2014, https://doi.org/10.7317/pk.2014.38.1.108
  6. -responsive swelling behavior and metal-ion adsorption properties in novel histamine-conjugated polyaspartamide hydrogel vol.133, pp.16, 2015, https://doi.org/10.1002/app.43305
  7. Anti-Radical and Cytotoxic Activity of Polysuccinimide and Polyaspartic Acid of Different Molecular Weight vol.6, pp.4, 2016, https://doi.org/10.1007/s12668-016-0230-0
  8. Self-assembled nanoparticles made from a new PEGylated poly(aspartic acid) graft copolymer for intravaginal delivery of poorly water-soluble drugs vol.28, pp.17, 2017, https://doi.org/10.1080/09205063.2017.1374032
  9. Adhesive and self-healing soft gel based on metal-coordinated imidazole-containing polyaspartamide vol.295, pp.4, 2017, https://doi.org/10.1007/s00396-017-4051-7
  10. Surface modification using bio-inspired adhesive polymers based on polyaspartamide derivatives vol.60, pp.11, 2011, https://doi.org/10.1002/pi.3116
  11. 아미노산 곁사슬 치환 폴리아스팔트산계 생분해성 고흡수성 젤의 제조와 물성 vol.35, pp.6, 2011, https://doi.org/10.7317/pk.2011.35.6.558
  12. Switchable On-Demand Release of a Nanocarrier from a Segmented Reservoir Type Intravaginal Ring Filled with a pH-Responsive Supramolecular Polyurethane Hydrogel vol.1, pp.3, 2009, https://doi.org/10.1021/acsabm.8b00146