DOI QR코드

DOI QR Code

Microwave-Assisted Synthesis of 3-Styrylchromones in Alkaline Ionic Liquid

  • Shelke, Kiran F. (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Sapkal, Suryakant B. (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shitole, Nana V. (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingate, Bapurao B. (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingare, Murlidhar S. (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • Published : 2009.12.20

Abstract

A simple, highly efficient and environmentally benign method for the synthesis of 3-styrylchromones from 3-formylchromones and 4-nitrophenylacetic acid/4-nitrotolune in the presence of catalytic amount of basic ionic liquid 1-butyl-3-methylimidazolium hydroxide [(bmim)OH] carried out under the influence of microwave irradiation. This method gives remarkable advantages such as, short reaction times, simple work-up procedure and moderate to good yields. The ionic liquid was successfully reused for four cycles without significant loss of activity.

Keywords

References

  1. Desideri, N.; Conti, C.; Mastropaolo, F. Antiviral Chem. Chemother. 2000, 11, 373
  2. Peixoto, F.; A. Barros, I. R. N. A.; Silva, A. M. S. J. Biochem. Mol. Toxicol. 2002, 16, 220 https://doi.org/10.1002/jbt.10042
  3. Fernandes, E.; Carvalho, M.; Carvalho, F.; Silva, A. M. S.; Santos, C. M. M.; Pinto, D. C. G. A.; Cavaleiro, J. A. S.; Bastos, M. L. Arch. Toxicol. 2003, 77, 500 https://doi.org/10.1007/s00204-003-0480-9
  4. Filipe, P.; Silva, A. M. S.; Morlière, P.; Brito, C. M.; Patterson, L. K.; Hug, G. L.; Silva, J. N.; Cavaleiro, J. A. S.; Mazière, J.-C.; Freitas, J. P.; Santus, R. Biochem. Pharmacol. 2004, 67, 2207 https://doi.org/10.1016/j.bcp.2004.02.030
  5. (a) Doria, G.; Romero, C.; Forgione, A.; Sberze, P.; Tibolla, N.; Corno, M. L.; Cruzzola, G.; Cadelli, G. Eur. J. Med. Chem. 1979, 14, 347.(Please refer to the other references for details:no.24)
  6. (a) Gerwick, W. H.; Lopez, A.; Van Duyne, G. D.; Clardy, J.; Ortiz, W.; Baez, A. Tetrahedron Lett. 1986, 27, 1979. (Please refer to the other references for details:no.25) https://doi.org/10.1016/S0040-4039(00)84426-3
  7. Sonawane, S. A.; Chavan, V. P.; Karale, B. K.; Shingare, M. S. Ind. J. Heterocyclic Chem. 2002, 12, 65
  8. (a) Karale, B. K.; Gill, C. H.; Shingare, M. S. Ind. J. Heterocycl. Chem. 2003, 12, 267. (Please refer to the other references for details:no.26) https://doi.org/10.1002/jhet.5570120211
  9. Sandulache, A.; Silva, A. M. S.; Pinto, D. C. G. A.; Almeida, L. M. P. M.; Cavaleiro, J. A. S. New J. Chem. 2003, 27, 1592 https://doi.org/10.1039/b303554a
  10. Lokshin, V.; Heynderickx, A.; Samat, A.; Pèpe, G.; Guglielmetti, R. Tetrahedron Lett. 1999, 40, 6761 https://doi.org/10.1016/S0040-4039(99)01301-5
  11. Atassi, G.; Briet, P.; Berthelon, J. P.; Collonges, F. J. Med. Chem. Chim. Ther. 1985, 20, 393
  12. Middleton, Jr., E.; Kandaswami, C. The Flavonoids Advances in Research Since 1986; Harborne, J. B., Ed.; Chapman: Hall, London, 1994; p 619
  13. Harborne, J. B.; Williams, C. A. Phytochemistry 2000, 55, 481 https://doi.org/10.1016/S0031-9422(00)00235-1
  14. Thomas, W. Chem. Rev. 1999, 99, 2071 https://doi.org/10.1021/cr980032t
  15. Sheldon, R. Chem. Commun. 2001, 2399 https://doi.org/10.1039/b107270f
  16. Zhao, D.; Wu, M.; Kou, Y.; Min, K. Catal. Today 2002, 2654, 1
  17. Peng, J.; Deng, Y. Tetrahedron Lett. 2001, 42, 403 https://doi.org/10.1016/S0040-4039(00)01974-2
  18. Shen, Z. L.; Zhou, W. J.; Liu, Y. T.; Ji, S. J.; Loh, T. P. Green Chem. 2008, 10, 283 https://doi.org/10.1039/b717235d
  19. Gong, K.; He, Z.-W.; Xu, Y.; Fang, D.; Liu, Z.-L. Monatsh. Chem. 2008, 139, 913 https://doi.org/10.1007/s00706-008-0871-y
  20. (a) Fischer, T.; Sethi, A.; Welton, T.; Woolf, J. Tetrahedron Lett. 1999, 40, 793.(Please refer to the other references for details:no.27-no.28) https://doi.org/10.1016/S0040-4039(98)02415-0
  21. Kahveci, B.; Ozil, M.; Serdar, M. Heteroatom Chem. 2008, 19, 38 https://doi.org/10.1002/hc.20381
  22. (a) Karale, B. K.; Chavan, V. P.; Mane, A. S.; Hangarge, R. V.; Gill, C. H.; Shingare, M. S. Synth. Comm. 2002, 32, 497.(Please refer to the other references for details:no.29-no.30) https://doi.org/10.1081/SCC-120002395
  23. (a) Pawar, S. S.; Dekhane, D. V.; Shingare, M. S.; Thore, S. N. Tetrahedron Lett. 2008, 49, 4252.(Please refer to the other references for details:no.31-no.36) https://doi.org/10.1016/j.tetlet.2008.04.148
  24. (b) Brion, J. D.; Le Baut, G.; Zammattio, F.; Pierre, A.; Atassi, G.; Belachmi, L. Eur. Pat. Appl. 1991, EP 454, 587; Chem. Abstr. 1992, 116, 106092K
  25. (b) Gerwick, W. H. J. Nat. Prod. 1989, 52, 252 https://doi.org/10.1021/np50062a005
  26. (b) Silva, V. L. M.; Silva, A. M. S.; Pinto, D. C. G. A.; Cavaleiro, J. A. S. Aveiro. 2003, PO102, 148
  27. (b) Le Boulaire, V. R. Chem. Commun. 2000, 2195. https://doi.org/10.1039/b006666o
  28. (c) Ji, S. J.; Jiang, Z. Q.; Lu, J.; Loh, T. P Synlett 2004, 5, 831. https://doi.org/10.1055/s-2004-820035
  29. (b) Shindalkar, S. S.; Madje, B. R.; Shingare, M. S. Mendeleev Commun. 2007, 17, 43. https://doi.org/10.1016/j.mencom.2007.01.017
  30. (c) Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. S. Tetrahedron Lett. 2009, 50, 1754. https://doi.org/10.1016/j.tetlet.2009.01.140
  31. (b) Sadaphal, S. A.; Shelke, K. F.; Sonar, S. S.; Shingare, M. S. Central Euro. J. Chem. 2008, 6, 622. https://doi.org/10.2478/s11532-008-0069-5
  32. (c) Diwakar, S. D.; Bhagwat, S. S.; Shingare, M. S.; Gill, C. H. Bioorg. Med. Chem. Lett. 2008, 18, 4678. https://doi.org/10.1016/j.bmcl.2008.07.007
  33. (d) Shelke, K. F.; Sapkal, S. B.; Shingare, M. S. Chie. Chem. Lett. 2009, 20, 283. https://doi.org/10.1016/j.cclet.2008.11.033
  34. (e) Shelke, K. F.; Sapkal, S. B.; Sonar, S. S.; Madje, B. R.; Shingate, B. B.; Shingare, M. S Bull. Korean Chem. Soc. 2009, 30, 1057. https://doi.org/10.5012/bkcs.2009.30.5.1057
  35. (f) Shelke, K. F.; Madje, B. R.; Sapkal, S. B.; Shingate, B. B.; Shingare, M. S. Green Chem. Lett. Rev. 2009, 2, 3. https://doi.org/10.1080/17518250902763101
  36. (e) Shelke, K. F.; Sapkal, S. B.; Kategaonkar, A. H.; Shingate, B. B.; Shingare, M. S. S. Afr. J. Chem. 2009, 62, 109.

Cited by

  1. Sonochemistry: Synthesis of bioactive heterocycles vol.4, pp.3, 2014, https://doi.org/10.1134/S2079978014030030
  2. magnetic porous nanospheres as a recyclable catalyst vol.39, pp.5, 2015, https://doi.org/10.1039/C5NJ00050E
  3. Synthesis and biological evaluation of 1,2,4,5-tetrasubstituted imidazoles vol.43, pp.8, 2017, https://doi.org/10.1007/s11164-017-2886-7
  4. The Beneficial Sinergy of MW Irradiation and Ionic Liquids in Catalysis of Organic Reactions vol.7, pp.9, 2017, https://doi.org/10.3390/catal7090261
  5. Recent Developments on Ultrasound-Assisted Synthesis of Bioactive N-Heterocycles at Ambient Temperature vol.70, pp.8, 2017, https://doi.org/10.1071/CH17080
  6. ChemInform Abstract: Microwave-Assisted Synthesis of 3-Styrylchromones in Alkaline Ionic Liquid. vol.41, pp.18, 2010, https://doi.org/10.1002/chin.201018139
  7. Ultrasound-Assisted One-Pot Synthesis of Octahydroquinazolinone Derivatives Catalyzed by Acidic Ionic Liquid [Tbmim]Cl2/AlCl3 vol.57, pp.1, 2009, https://doi.org/10.1002/jccs.201000014
  8. NaHSO4/SiO2: An Efficient Catalyst for the Synthesis of β-Enaminones and 2-Methylquinolin-4(1H)-Ones under Solvent-Free Condition vol.54, pp.6, 2009, https://doi.org/10.5012/jkcs.2010.54.6.723
  9. Potassium dihydrogen phosphate catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imidazoles vol.21, pp.4, 2009, https://doi.org/10.1016/j.cclet.2009.11.012
  10. Solid-Phase Synthesis of 2-Arylbenzothiazole Using Silica Sulfuric Acid under Microwave Irradiation vol.31, pp.4, 2009, https://doi.org/10.5012/bkcs.2010.31.04.981
  11. An Efficient One-Pot Strategies for the Synthesis of [1,3] Oxazine Derivatives vol.54, pp.4, 2009, https://doi.org/10.5012/jkcs.2010.54.4.437
  12. Nanocrystalline magnesium oxide: a novel and efficient catalyst for facile synthesis of 2,4,5-trisubstituted imidazole derivatives vol.141, pp.12, 2009, https://doi.org/10.1007/s00706-010-0397-y
  13. Ultrasound assisted one pot synthesis of imidazole derivatives using diethyl bromophosphate as an oxidant vol.19, pp.1, 2009, https://doi.org/10.1016/j.ultsonch.2011.05.009
  14. A highly efficient magnetic solid acid catalyst for synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation vol.20, pp.2, 2009, https://doi.org/10.1016/j.ultsonch.2012.10.004
  15. Sulfonic acid-functionalized mesoporous silica (SBA-Pr-SO3H) as solid acid catalyst in organic reactions vol.397, pp.None, 2009, https://doi.org/10.1016/j.molcata.2014.10.009
  16. A highly efficient magnetic solid acid nanocatalyst for the synthesis of new bulky heterocyclic compounds vol.6, pp.53, 2009, https://doi.org/10.1039/c6ra02749k
  17. Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom Under Ultrasonic Irradiation vol.16, pp.5, 2009, https://doi.org/10.2174/1570193x15666180709144028
  18. Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom Under Ultrasonic Irradiation vol.16, pp.5, 2009, https://doi.org/10.2174/1570193x15666180709144028
  19. In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypa vol.118, pp.5, 2019, https://doi.org/10.1007/s00436-019-06206-z
  20. Nanocrystalline ZnO: A Competent and Reusable Catalyst for the Preparation of Pharmacology Relevant Heterocycles in the Aqueous Medium vol.7, pp.None, 2020, https://doi.org/10.2174/2213346107666200218122718
  21. Bronsted acidic ionic liquid catalyzed an eco-friendly and efficient procedure for synthesis of 2,4,5-trisubstituted imidazole derivatives under ultrasound irradiation and optimal conditions vol.46, pp.2, 2009, https://doi.org/10.1007/s11164-019-04048-z