DOI QR코드

DOI QR Code

Thermal Stability of Trifunctional Epoxy Resins Modified with Nanosized Calcium Carbonate

  • Jin, Fan-Long (School of Chemical and Materials Engineering, Jilin Institute of Chemical Technology) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Published : 2009.02.20

Abstract

Trifunctional epoxy resin triglycidyl paraaminophenol (TGPAP)/$CaCO_3$ nanocomposites were prepared using the melt blending method. The effects of nano-$CaCO_3$ content on the thermal behaviors, such as cure behavior, glass transition temperature ($T_g$), thermal stability, and the coefficient of thermal extension (CTE), were investigated by several techniques. Differential scanning calorimetry (DSC) results indicated that the cure reaction of the TGPAP epoxy resin was accelerated with the addition of nano-$CaCO_3$. When the nano-$CaCO_3$ content was increased, the $T_g$ of the TGPAP/$CaCO_3$ nanocomposites did not obviously change, whereas the crosslinking density was linearly increased. The nanocomposites showed a higher thermal stability than that of the neat epoxy resin. This result could be attributed to the increased surface contact area between the nano-$CaCO_3$ particles and the epoxy matrix, as well as the high crosslinking density in the TGPAP/$CaCO_3$ nanocomposites. The CTE of the nanocomposites in the rubbery region was significantly decreased as the nano-$CaCO_3$ content was increased.

Keywords

References

  1. Bauer, R. S. Epoxy Resin Chemistry, Advanced in Chemistry Series, No 114; American Chemical Society: Washington DC, 1979; p 1
  2. Gowda, S. K. N.; Mahendra, K. N. Bull. Korean Chem. Soc. 2006, 27, 1542 https://doi.org/10.5012/bkcs.2006.27.10.1542
  3. Rong, M. Z.; Zhang, M. Q.; Zheng, Y. X.; Zeng, H. M.; Friedrich, K. Polymer 2001, 42, 3301 https://doi.org/10.1016/S0032-3861(00)00741-2
  4. Zhou, Y.; Wang, S.; Zhang, Y.; Zhang, Y. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 1226 https://doi.org/10.1002/polb.20774
  5. Zhang, Z. Z.; Su, F. H.; Wang, K.; Jiang, W.; Men, X. H.; Liu, W. M. Mater. Sci. Eng. A 2005, 404, 251 https://doi.org/10.1016/j.msea.2005.05.084
  6. Naous, W.; Yu, X. Y.; Zhang, Q. X.; Naito, K.; Kagawa, Y. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 1466 https://doi.org/10.1002/polb.20800
  7. Jin, F. L.; Rhee, K. Y.; Park, S. J. Mater. Sci. Eng. A 2006, 435-436, 429 https://doi.org/10.1016/j.msea.2006.07.071
  8. Chen, C. H.; Teng, C. C.; Su, S. F.; Wu, W. C.; Yang, C. H. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 451. https://doi.org/10.1002/polb.20721
  9. Li, G.; Mai, K. C.; Feng, K. C.; Huang, Y. P. Polym. Int. 2006, 55, 891 https://doi.org/10.1002/pi.2024
  10. Shi, Q.; Wang, L.; Yu, H.; Jiang, S.; Zhao, Z.; Dong, X. Macromol. Mater. Eng. 2006, 291, 53 https://doi.org/10.1002/mame.200500223
  11. Zhang, L.; Li, C.; Huang, R. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 1656 https://doi.org/10.1002/polb.20035
  12. Wang, Y.; Lu, J.; Wang, G. J. Appl. Polym. Sci. 1997, 64, 1275 https://doi.org/10.1002/(SICI)1097-4628(19970516)64:7<1275::AID-APP5>3.0.CO;2-G
  13. Mishra, S.; Shimpi, N. G. J. Appl. Polym. Sci. 2005, 98, 2563 https://doi.org/10.1002/app.22458
  14. Chen, C. H.; Sun, Y. Y. J. Appl. Polym. Sci. 2006, 99, 1826
  15. Yu, H.; Wang, L.; Shi, Q.; Jiang, S.; Jiang, G. J. Appl. Polym Sci. 2006, 101, 2656 https://doi.org/10.1002/app.23908
  16. Jin, F. L.; Park, S. J. Mater. Sci. Eng. A 2008, 475, 190 https://doi.org/10.1016/j.msea.2007.04.046
  17. Plangsangmas, L.; Mecholsky, J. J.; Brennan, A. B. J. Appl. Polym. Sci. 1999, 72, 257 https://doi.org/10.1002/(SICI)1097-4628(19990411)72:2<257::AID-APP11>3.0.CO;2-M
  18. Murayama, T.; Bell, J. P. J. Polym. Sci. Part A-2 1970, 8, 437 https://doi.org/10.1002/pol.1970.160080309
  19. Park, S. J.; Jin, F. L. Polym. Int. 2005, 54, 705 https://doi.org/10.1002/pi.1755
  20. Rath, S. K.; Boey, F. Y. C.; Abadie, M. J. M. Polym. Int. 2004, 53, 857 https://doi.org/10.1002/pi.1383
  21. Coats, A. W.; Redferm, J. W. J. Polym. Sci. Polym. Lett. 1965, 3, 917 https://doi.org/10.1002/pol.1965.110031106
  22. May, C. A. Epoxy Resins, Chemistry and Technology; Marcel Dekker: New York, 1988; p 298
  23. Li, G.; Mai, K.; Feng, K. J. Appl. Polym. Sci. 2006, 99, 2138 https://doi.org/10.1002/app.22752
  24. Jin, F. L.; Park, S. J. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 3348 https://doi.org/10.1002/polb.20990
  25. Jin, F. L.; Park, S. J. Polym. Degrad. Stab. 2007, 92, 509 https://doi.org/10.1016/j.polymdegradstab.2006.04.007
  26. Park, S. J.; Jin, F. L.; Lee, C. Mater. Sci. Eng. A 2005, 402, 335 https://doi.org/10.1016/j.msea.2005.05.015

Cited by

  1. nanoparticles effect on morphology, thermal, and mechanical properties of epoxy/silica composites vol.23, pp.10835601, 2017, https://doi.org/10.1002/vnl.21558
  2. Physico-mechanical and fire properties of polyurethane/melamine-formaldehyde interpenetrating polymer network foams vol.24, pp.9, 2016, https://doi.org/10.1007/s13233-016-4115-4
  3. -Epoxy Composite Coating vol.6, pp.1847-9804, 2016, https://doi.org/10.5772/63786
  4. Synthesis of bio-based epoxy resin from gallic acid with various epoxy equivalent weights and its effects on coating properties vol.14, pp.2, 2017, https://doi.org/10.1007/s11998-016-9853-x
  5. High-performance flexible epoxy/ZnO nanocomposites with enhanced mechanical and thermal properties vol.57, pp.9, 2017, https://doi.org/10.1002/pen.24520
  6. Synthesis of a Novel Phosphorus-containing Flame Retardant for Epoxy Resins vol.30, pp.11, 2009, https://doi.org/10.5012/bkcs.2009.30.11.2643
  7. Effects of Spinning Conditions on Properties of Polyester Yarn Prepared using an Ultra-high-speed Melt Spinning Technique Equipped with a Steam Chamber vol.31, pp.11, 2010, https://doi.org/10.5012/bkcs.2010.31.11.3252
  8. Thermal Stability and Fracture Toughness of Epoxy Resins Modified with Epoxidized Castor Oil and Al2O3 Nanoparticles vol.33, pp.8, 2009, https://doi.org/10.5012/bkcs.2012.33.8.2513
  9. Recent Advances in Carbon-Nanotube-Based Epoxy Composites vol.14, pp.1, 2009, https://doi.org/10.5714/cl.2012.14.1.001
  10. SiO2/carbon fiber-reinforced polypropylene-thermoplastic polyurethane composites: electrical conductivity and mechanical and thermal properties vol.28, pp.6, 2009, https://doi.org/10.1007/s13726-019-00720-8
  11. The Influence of Modification with Natural Fillers on the Mechanical Properties of Epoxy Adhesive Compositions after Storage Time vol.13, pp.2, 2009, https://doi.org/10.3390/ma13020291
  12. Experimental Study of Mechanical Properties of Epoxy Compounds Modified with Calcium Carbonate and Carbon after Hygrothermal Exposure vol.13, pp.23, 2009, https://doi.org/10.3390/ma13235439
  13. Effect of coactive influence of LDHs and PNCC on thermal and mechanical properties of epoxy resin vol.50, pp.5, 2009, https://doi.org/10.1080/14658011.2020.1866376
  14. Multifunctional Epoxy Nanocomposites for Improved Mechanical Properties for Surface Coating Applications vol.102, pp.2, 2009, https://doi.org/10.1007/s40034-021-00224-2