DOI QR코드

DOI QR Code

Low Temperature Methane Steam Reforming for Hydrogen Production for Fuel Cells

  • Roh, Hyun-Seog (Department of Environmental Engineering, Yonsei University) ;
  • Jun, Ki-Won (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology (KRICT))
  • Published : 2009.01.20

Abstract

Low temperature methane steam reforming to produce $H_2$ for fuel cells has been calculated thermodynamically considering both heat loss of the reformer and unreacted $H_2$ in fuel cell stack. According to the thermodynamic equilibrium analysis, it is possible to operate methane steam reforming at low temperatures. A scheme for the low temperature methane steam reforming to produce $H_2$ for fuel cells by burning both unconverted $CH_4$ and $H_2$ to supply the heat for steam methane reforming has been proposed. The calculated value of the heat balance temperature is strongly dependent upon the amount of unreacted $H_2$ and heat loss of the reformer. If unreacted $H_2$ increases, less methane is required because unreacted $H_2$ can be burned to supply the heat. As a consequence, it is suitable to increase the reaction temperature for getting higher $CH_4$ conversion and more $H_2$ for fuel cell stack. If heat loss increases from the reformer, it is necessary to supply more heat for the endothermic methane steam reforming reaction from burning unconverted $CH_4$, resulting in decreasing the reforming temperature. Experimentally, it has been confirmed that low temperature methane steam reforming is possible with stable activity.

Keywords

References

  1. Yamamoto, O. Electrochimica Acta 2000, 45, 2423 https://doi.org/10.1016/S0013-4686(00)00330-3
  2. Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1, 5 https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
  3. Ashcroft, A. T.; Cheetham, A. K.; Foord, J. S.; Green, M. L. H.; Grey, C. P.; Murrell, A. J.; Vernon, P. D. F. Nature 1990, 344, 319 https://doi.org/10.1038/344319a0
  4. Rostrup-Nielsen, J. R. In Catalysis Science and Technology; Anderson, J. R.; Boudart, M., Eds.; Springer: Berlin, 1984; Vol. 5, p 91
  5. Pena, M. A.; Gomez, J. P.; Fierro, J. L. G. Appl. Catal. A 1996, 144, 7 https://doi.org/10.1016/0926-860X(96)00108-1
  6. Bradford, M. C. J.; Vannice, M. A. Catal. Rev.-Sci. Eng. 1999, 41, 1 https://doi.org/10.1081/CR-100101948
  7. Jun, K.-W.; Roh, H.-S.; Chary, K. V. R. Catal. Surv. Asia 2007, 11, 97 https://doi.org/10.1007/s10563-007-9026-0
  8. Jeong, J. H.; Lee, J. W.; Seo, D. J.; Seo, Y. T.; Yoon, W. L.; Lee, D. K.; Kim, D. H. Appl. Catal. A 2006, 302, 151 https://doi.org/10.1016/j.apcata.2005.12.007
  9. Lee, D. K.; Baek, I. H.; Yoon, W. L. Int. J. Hydrogen Energy 2006, 31, 649. https://doi.org/10.1016/j.ijhydene.2005.05.008
  10. Chin, Y.-H.; King, D. L.; Roh, H.-S.; Wang, Y.; Heald, S. M. J. Catal. 2006, 244, 153 https://doi.org/10.1016/j.jcat.2006.08.016
  11. Roh, H.-S.; Potdar, H. S.; Jun, K.-W.; Kim, J.-W.; Oh, Y.-S. Appl. Catal. A 2004, 276, 231 https://doi.org/10.1016/j.apcata.2004.08.009
  12. Roh, H.-S.; Potdar, H. S.; Jun, K.-W. Catal. Today 2004, 93-95, 39 https://doi.org/10.1016/j.cattod.2004.05.012
  13. Oh, Y.-S.; Roh, H.-S.; Jun, K.-W.; Baek, Y.-S. Int. J. Hydrogen Energy 2003, 28, 1387 https://doi.org/10.1016/S0360-3199(03)00029-6
  14. Roh, H.-S.; Jun, K.-W.; Park, S.-E. Appl. Catal. A 2003, 251, 275 https://doi.org/10.1016/S0926-860X(03)00359-4
  15. Potdar, H. S.; Roh, H.-S.; Jun, K.-W.; Ji, M.; Liu, Z.-W. Catal. Lett. 2002, 84, 95 https://doi.org/10.1023/A:1021036920308
  16. Liu, Z.-W.; Jun, K.-W.; Roh, H.-S.; Baek, S.-C.; Park, S.-E.; Song, T.-Y. J. Mol. Catal. A 2002, 189, 283 https://doi.org/10.1016/S1381-1169(02)00365-5
  17. Liu, Z.-W.; Jun, K.-W.; Roh, H.-S.; Park, S.-E. J. Power Sources 2002, 111, 283 https://doi.org/10.1016/S0378-7753(02)00317-8
  18. Roh, H.-S.; Jun, K.-W.; Baek, S.-C.; Park, S.-E. Bull. Korean Chem. Soc. 2002, 23, 1166 https://doi.org/10.5012/bkcs.2002.23.8.1166
  19. Roh, H.-S.; Jun, K.-W.; Baek, S.-C.; Park, S.-E. Catal. Lett. 2002, 81, 147 https://doi.org/10.1023/A:1016531018819
  20. Roh, H.-S.; Koo, K. Y.; Jeong, J. H.; Seo, Y. T.; Seo, D. J.; Seo, Y.-S.; Yoon, W. L.; Park, S. B. Catal. Lett. 2007, 117, 85 https://doi.org/10.1007/s10562-007-9113-x
  21. Koo, K. Y.; Roh, H.-S.; Seo, Y. T.; Seo, D. J.; Yoon, W. L.; Park, S. B. Appl. Catal. A 2008, 340, 183 https://doi.org/10.1016/j.apcata.2008.02.009
  22. Koo, K. Y.; Roh, H.-S.; Seo, Y. T.; Seo, D. J.; Yoon, W. L.; Park, S. B. Int. J. Hydrogen Energy 2008, 33, 2036 https://doi.org/10.1016/j.ijhydene.2008.02.029
  23. Roh, H.-S.; Jun, K.-W.; Baek, S.-C.; Park, S.-E. Bull. Korean Chem. Soc. 2002, 23, 799 https://doi.org/10.5012/bkcs.2002.23.6.799
  24. Roh, H.-S.; Jun, K.-W.; Baek, S.-C.; Park, S.-E. Bull. Korean Chem. Soc. 2002, 23, 793 https://doi.org/10.5012/bkcs.2002.23.6.793
  25. Roh, H.-S.; Dong, W.-S.; Jun, K.-W.; Liu, Z.-W.; Park, S.-E.; Oh, Y.-S. Bull. Korean Chem. Soc. 2002, 23, 669 https://doi.org/10.1007/BF02705914
  26. Roh, H.-S.; Jun, K.-W.; Dong, W.-S.; Chang, J.-S.; Park, S.-E.; Joe, Y.-I. J. Mol. Catal. A 2002, 181, 137 https://doi.org/10.1016/S1381-1169(01)00358-2
  27. Dong, W.-S.; Roh, H.-S.; Jun, K.-W.; Park, S.-E.; Oh, Y.-S. Appl. Catal. A 2002, 226, 63 https://doi.org/10.1016/S0926-860X(01)00883-3
  28. Dong, W.-S.; Roh, H.-S.; Liu, Z.-W.; Jun, K.-W.; Park, S.-E. Bull. Korean Chem. Soc. 2001, 22, 1323
  29. Roh, H.-S.; Jun, K.-W.; Dong, W.-S.; Park, S.-E.; Baek, Y.-S. Catal. Lett. 2001, 74, 31 https://doi.org/10.1023/A:1016699317421
  30. Choudhary, T. V.; Goodman, D. W. J. Mol. Catal. A 2000, 163, 9 https://doi.org/10.1016/S1381-1169(00)00395-2

Cited by

  1. Natural gas steam reforming for hydrogen production over metal monolith catalyst with efficient heat-transfer vol.35, pp.4, 2009, https://doi.org/10.1016/j.ijhydene.2009.12.051
  2. Study of CO Oxidation on Well-Characterized Pt-Ru/C Electrocatalysts Having Different Composition vol.31, pp.1, 2009, https://doi.org/10.5012/bkcs.2010.31.01.151
  3. Steam reforming of methane over highly active and KOH-resistant Ni/γ-Al2O3 catalysts for direct internal reforming (DIR) in a molten carbonate fuel cell (MCFC) vol.383, pp.1, 2009, https://doi.org/10.1016/j.apcata.2010.05.037
  4. Techno-economic evaluation of a new CCHP system with a hydrogen production unit vol.14, pp.2, 2009, https://doi.org/10.1093/ijlct/ctz017
  5. Catalytic Conversion of Methane at Low Temperatures: A Critical Review vol.8, pp.8, 2009, https://doi.org/10.1002/ente.201900750