DOI QR코드

DOI QR Code

Quantitative Determination of the Chromophore Alignment Induced by Electrode Contact Poling in Self-Assembled NLO Materials

  • Kim, Tae-Dong (Department of Advanced Materials, Hannam University) ;
  • Luo, Jingdong (Department of Material Sciences and Engineering, and Institute of Advanced Materials and Technology, University of Washington) ;
  • Jen, Alex K.-Y. (Department of Material Sciences and Engineering, and Institute of Advanced Materials and Technology, University of Washington)
  • Published : 2009.04.20

Abstract

The electrode contact poling is one of the efficient tools to induce a stable polar order of nonlinear optical (NLO) chromophores in the solid film. Self-assembled NLO chromophores with high electro-optic (E-O) activities were utilized for quantitative determination of the chromophore order induced under contact poling by spectroscopic changes. We found that NLO chromophores rarely decompose under the high electric field during contact poling. The absorption spectra were de-convoluted into a sum of Gaussian components to separate energy transitions for a binary composite system which contains a secondary guest chromophore AJC146 in the self-assembled chromophore HDFD. Poling efficiency was significantly improved in the binary system compared to the individual components.

Keywords

References

  1. Zheng, X.; Sinyukov, A.; Hayden, L. M. Appl. Phys. Lett. 2005, 87, 081115. https://doi.org/10.1063/1.2034115
  2. Xu, Q.; Schmidt, B.; Pradhan, S.; Lipson, M. Nature 2005, 435, 325. https://doi.org/10.1038/nature03569
  3. Jang, H.-N.; Lee, G.-Y.; Lee, J.-Y. Bull. Korean Chem. Soc. 2008, 29, 811. https://doi.org/10.5012/bkcs.2008.29.4.811
  4. Cho, M. J.; Kim, J. Y.; Kim, J. H.; Lee, S. H.; Dalton, L. R.; Choi, D. H. Bull. Korean Chem. Soc. 2005, 26, 77. https://doi.org/10.5012/bkcs.2005.26.1.077
  5. Kuo, Y.-H.; Luo, J.; Steier, W. H.; Jen, A. K.-Y. IEEE Photon. Tech. Lett. 2006, 18, 175. https://doi.org/10.1109/LPT.2005.861632
  6. Kim, S.-K.; Hung, Y.-C.; Seo, B.-J.; Geary, K.; Yuan, W.; Bortnik, B.; Fetterman, H. R.; Wang, C.; Steier, W. H.; Zhang, C. Appl. Phys. Lett. 2005, 87, 061112. https://doi.org/10.1063/1.2009807
  7. Enami, Y.; Derose, C. T.; Mathine, D.; Loychik, C.; Greenlee, C.; Norwood, R. A.; Kim, T.-D.; Luo, J.; Tian, Y.; Jen, A. K.-Y.; Peyghambarian, N. Nature Photon. 2007, 1, 423. https://doi.org/10.1038/nphoton.2007.123
  8. Chen, H.; Chen, B.; Huang, D.; Jin, D.; Luo, J.; Jen, A. K.-Y.; Dinu, R. Appl. Phys. Lett. 2008, 93, 0435071.
  9. Baehr-Jones, T.; Penkov, B.; Huang, J.; Sullivan, P.; Davies, J.; Takayesu, J.; Luo, J.; Kim, T.-D.; Dalton, L.; Jen, A.; Hochberg, M.; Scherer, A. Appl. Phys. Lett. 2008, 92, 1633031.
  10. Rau, I.; Armatys, P.; Chollet, P.-A.; Kajzar, F.; Bretonnierer, Y.; Andraud, C. Chem. Phys. Lett. 2007, 442, 329. https://doi.org/10.1016/j.cplett.2007.05.058
  11. Enami, Y.; Meredith, G.; Peyghambarian, N.; Kawazu, M.; Jen, A. K.-Y. Appl. Phys. Lett. 2003, 82, 490. https://doi.org/10.1063/1.1539298
  12. Kajzar, F.; Lee, K.-S.; Jen, A. K.-Y. Adv. Polym. Sci. 2003, 161, 1. https://doi.org/10.1007/3-540-45642-2_1
  13. Singer, K. D.; Kuzyk, M. G.; Holland, W. R.; Sohn, J. E.; Lalama, S. J.; Comizzoli, R. B.; Katz, H. E.; Schilling, M. L. App. Phys. Lett. 1988, 53, 1800. https://doi.org/10.1063/1.99785
  14. Inaba, R.; Sagawa, M.; Isogai, M.; Kakuta, A. Macromolecules 1996, 29, 2954. https://doi.org/10.1021/ma950748f
  15. Kim, T.-D.; Kang, J.-W.; Luo, J.; Jang, S.-H.; Ka, J.-W.; Tucker, N.; Benedict, J. B.; Dalton, L. R.; Gray, T.; Overney, R. M.; Park, D. H.; Herman, W. N.; Jen, A. K.-Y. J. Am. Chem. Soc. 2007, 129, 488. https://doi.org/10.1021/ja067970s
  16. Teng, C. C.; Man, H. T. Appl. Phys. Lett. 1990, 56, 1734. https://doi.org/10.1063/1.103107
  17. Paloczi, G. T.; Huang, Y.; Yariv, A.; Luo, J.; Jen, A. K.-Y. Appl. Phys. Lett. 2004, 85, 1662-1664. https://doi.org/10.1063/1.1787944
  18. Sinyukov, A. M.; Leahy, M. R.; Hayden, L. M.; Haller, M.; Luo, J.; Jen, A. K-Y.; Dalton, L. R. Appl. Phys. Lett. 2004, 85, 5827-5829. https://doi.org/10.1063/1.1835550
  19. Kim, T.-D.; Luo, J.; Ka, J.-W.; Hau, S.; Tian, Y.; Shi, Z.; Tucker, N. M.; Jang, S.-H.; Kang, J.-W.; Jen, A. K.-Y. Adv. Mater. 2006, 18, 3038. https://doi.org/10.1002/adma.200601582
  20. Kilbinger, A. F. M.; Grubbs, R. H. Angew. Chem. Int. Ed. 2002, 41, 1563. https://doi.org/10.1002/1521-3773(20020503)41:9<1563::AID-ANIE1563>3.0.CO;2-7
  21. Watt, S. W.; Dai, C.; Scott, A. J.; Burke, J. M.; Thomas, R. L.; Collings, J. C.; Viney, C.; Clegg, W.; Marder, T. B. Angew. Chem. Int. Ed. Engl. 2004, 43, 3061. https://doi.org/10.1002/anie.200453828
  22. Ryu, J.-H.; Cho, B.-K.; Lee, M. Bull. Korean Chem. Soc. 2006, 27, 1270. https://doi.org/10.5012/bkcs.2006.27.9.1270
  23. Mortazavi, M. A.; Knoesen, A.; Kowel, S. T.; Higgins, B. G.; Dienes, A. J. Opt. Soc. Am. B 1989, 6, 733. https://doi.org/10.1364/JOSAB.6.000733
  24. Ray, P. C.; Das, P. K. Eur. Polym. J. 1996, 32, 51. https://doi.org/10.1016/0014-3057(95)00106-9
  25. Biswas, N.; Umapathy, S. J. Raman Spectrosc. 2001, 32, 471. https://doi.org/10.1002/jrs.747
  26. Rodriguez, V.; Adamietz, F.; Sanguinet, L.; Buffeteau, T.; Sourisseau, C. J. Phys. Chem. B 2003, 107, 9736. https://doi.org/10.1021/jp035230p

Cited by

  1. Effect of Rigid Bridge-Protection Units, Quadrupolar Interactions, and Blending in Organic Electro-Optic Chromophores vol.29, pp.15, 2017, https://doi.org/10.1021/acs.chemmater.7b02020
  2. Absorption and order parameter dependency to temperature and poling field in polymer-dye films oriented by corona poling vol.27, pp.02, 2018, https://doi.org/10.1142/S0218863518500248
  3. Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials vol.19, pp.40, 2009, https://doi.org/10.1039/b907173c
  4. Optimal design and analysis of a high-speed, low-voltage polymer Mach-Zehnder interferometer electro-optic switch vol.42, pp.3, 2009, https://doi.org/10.1016/j.optlastec.2009.08.021