DOI QR코드

DOI QR Code

Kinetic Studies on the Nucleophilic Substitution Reaction of 4-X-Substituted-2,6-dinitrochlorobenzene with Pyridines in MeOH-MeCN Mixtures

  • Sung, Ryun-Youn (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National Univer) ;
  • Choi, Ho-june (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Jong-Pal (Department of Chemistry, Dond-A University) ;
  • Park, Jong-Keun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Koo, In-Sun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University)
  • Published : 2009.07.20

Abstract

The reaction rates of 4-X-2,6-dinitrochlorobenzenes (X = $NO_2,\;CN,\;CF_3$) with Y-substituted pyridines (Y = 3-$OCH_3,\;H,\;3-CH_3,\;4-CH_3$) in methanol-acetonitrile mixtures were measured by conductometry at 25 ${^{\circ}C}$. It was observed that the rate constant increased in the order of X = 4-$NO_2\;>\;4-CN\;>\;4-CF_3$ and the rate constant also increased in the order of Y = 4-$CH_3\;>\;3-CH_3\;>\;H\;>\;3-OCH_3$. When the solvent composition was varied, the rate constant increased in order of MeCN > 50% MeOH > MeOH. The electrophilic catalysis by methanol may be ascribed to the formation of hydrogen bonds between alcoholic hydrogen and nitrogen of pyridines in ground state. Based on the transition parameters, ${\rho}_S,\;{\rho}_N,\;{\beta}_Y,\;{\rho}_{XY}$ and solvent effects, the reaction seems to proceed via $S_N$Ar-Ad.E mechanism. We also estimated the isokinetic solvent mixtures (${\rho}_{XY}$ = 0) based on cross-interaction constants, where the substituent effects of the substrate and nucleophile are compensated.

Keywords

References

  1. Bernasconi, C. F. Acc. Chem. Res. 1978, 11, 147 https://doi.org/10.1021/ar50124a004
  2. Paradisi, C. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Ed.; Pergmon Press: Oxford, 1991; Vol. 4, p 423
  3. Wu, Z.; Glaser, R. J. Am. Chem. Soc. 2004, 126, 10632 https://doi.org/10.1021/ja047620a
  4. Miller, J. Aromatic Nucleophilic Substitution Reaction; Elsevier: London, 1968
  5. Ross, S. D. Prog. Phys. Org. Chem. 1963, 1, 31 https://doi.org/10.1002/9780470171806.ch2
  6. Terrier, F. Aromatic Nucleophilic Substitution Reaction; VCH Publishers: New York, 1991
  7. Bernasconi, C. F. MTP Int. Rev. Sci. Org. Chem. Ser. 1 1973, 3, 33
  8. Lee, H. W.; Lee, I. J. Korean Chem. Soc. 1978, 22, 221
  9. Koniglio, B. O. et al. J. Chem. Soc. 1966, 152
  10. Parker, A. J. J. Chem. Soc. 1961, 4398 https://doi.org/10.1039/jr9610004398
  11. Kingsbury, C. A. J. Org. Chem. 1964, 29, 3262 https://doi.org/10.1021/jo01034a032
  12. Suchkova, L. A.; Suchkova, L. A. Reakts. Sposobnost Organ. Soed. 1968, 5, 310
  13. Bullestreri, F. P. et al. J. Org. Chem. 1977, 42, 1415 https://doi.org/10.1021/jo00428a032
  14. Banjoko, O.; Babatunde, I. A. Tetrahedron 2004, 60, 4645 https://doi.org/10.1016/j.tet.2004.03.079
  15. Mancini, P. M.; Fortunato, G. G.; Vottero, L. R. J. Phys. Org. Chem. 2004, 17, 138 https://doi.org/10.1002/poc.704
  16. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834 https://doi.org/10.1021/jo9814905
  17. Kang, D. H.; Koo, I. S.; Lee, J. G.; Lee, I. J. Korean Chem. Soc. 1985, 29, 565
  18. Oh, H. K.; Yang, J. H.; Sung, D. D.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2000, 101
  19. Oh, H. K.; Kim, T. S.; Lee, H. W.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2002, 282
  20. Oh, H. K.; Yang, J. H.; Hwang, Y. H.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23, 221 https://doi.org/10.5012/bkcs.2002.23.2.221
  21. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 2188 https://doi.org/10.1021/jo991823d
  22. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57
  23. Lee, I. Chem. Soc. Rev. 1990, 19, 317 https://doi.org/10.1039/cs9901900317
  24. Jeong, K. S.; Oh, H. K. Bull. Korean Chem. Soc. 2009, 30, 253 https://doi.org/10.5012/bkcs.2009.30.1.253
  25. Park, S. Y.; Oh, H. K. Bull. Korean Chem. Soc. 2009, 30, 749 https://doi.org/10.5012/bkcs.2009.30.3.749
  26. Hwang, J.; Yang, K.; Koo, I. S.; Sung, D. S.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 733 https://doi.org/10.5012/bkcs.2006.27.5.733
  27. Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F.; Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Chapter 4
  28. Coetzee, J. F. Progress in Physical Organic Chemistry; Streitwieser, A.; Jr., Taft, R. W., Eds.; Wiley: New York, 1967; Vol. 4, pp 54-92
  29. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099
  30. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302 https://doi.org/10.1021/jp991115w
  31. Oh, H. K.; Kim, I. K.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2005, 26, 641 https://doi.org/10.1007/s11814-009-0107-9
  32. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529 https://doi.org/10.1135/cccc19991529
  33. Lee, I. Chem. Soc. Rev. 1990, 19, 317 https://doi.org/10.1039/cs9901900317
  34. Lee. I. Chem. Soc. Rev. 1995, 24, 223 https://doi.org/10.1039/cs9952400223
  35. Lee, I. J. Phys. Org. Chem. 1996, 9, 661 https://doi.org/10.1002/(SICI)1099-1395(199610)9:10<661::AID-POC842>3.0.CO;2-M
  36. Shpanko, I. V.; Kim, S. I.; Koh, J. K.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 533
  37. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc., Perkin Trans. 2 1985, 983
  38. Bentley, T. W.; Harris, H. C. J. Chem. Soc., Perkin Trans. 2 1986, 619
  39. Bentley, T. W.; Carter, G. E.; Koo, I. S. J. Chem. Soc., Chem. Commun. 1988, 41
  40. Yang, K.; Koo, I. S.; Lee, I.; Jo, D.-S. Bull. Korean Chem. Soc. 1994, 15, 280

Cited by

  1. Electronic and solvent effects on kinetics of SNAr substitution reactions of substituted anilines with 2,6-bis(trifluoromethanesulfonyl)-4-nitroanisole in MeOH–Me2SO mixtures of varying composition: one reaction with two mechanistic pathways vol.144, pp.10, 2013, https://doi.org/10.1007/s00706-013-1030-7
  2. Enthalpy-Entropy Correlations in Reactions of Aryl Benzoates with Potassium Aryloxides in Dimethylformamide vol.45, pp.4, 2013, https://doi.org/10.1002/kin.20763
  3. Nucleophilic Amination of Methoxy Arenes Promoted by a Sodium Hydride/Iodide Composite vol.129, pp.39, 2017, https://doi.org/10.1002/ange.201705916
  4. Activation parameter changes as an additive tool for a mechanistic viewpoint in the aromatic nucleophilic substitution reactions in solution vol.148, pp.8, 2017, https://doi.org/10.1007/s00706-017-1956-2
  5. Nucleophilic Amination of Methoxy Arenes Promoted by a Sodium Hydride/Iodide Composite vol.56, pp.39, 2017, https://doi.org/10.1002/anie.201705916
  6. Ar-Reaktionen: Intermediate oder Übergangszustände? vol.130, pp.45, 2018, https://doi.org/10.1002/ange.201809606
  7. Ar Reactions: Intermediates or Transition States? vol.57, pp.45, 2018, https://doi.org/10.1002/anie.201809606
  8. Asymmetric α-arylation of amino acids vol.562, pp.7725, 2018, https://doi.org/10.1038/s41586-018-0553-9
  9. Single Electron Transfer (SET) Pathway: Nucleophilic Substitution Reaction of 4-Chloro-7-nitrobenzofurazan with Anilines in MeOH-MeCN Mixtures vol.31, pp.10, 2009, https://doi.org/10.5012/bkcs.2010.31.10.2801
  10. Single Electron Transfer (SET) Pathway: Nucleophilic Substitution Reaction of 4-Chloro-7-nitrobenzofurazan with Anilines in MeOH-MeCN Mixtures vol.31, pp.10, 2009, https://doi.org/10.5012/bkcs.2010.31.10.2801
  11. Kinetics and Mechanism of Nucleophilic Substitution Reaction of 4-Substituted-2,6-dinitrochlorobenzene with Benzylamines in MeOH-MeCN Mixtures vol.31, pp.11, 2009, https://doi.org/10.5012/bkcs.2010.31.11.3279
  12. 6-Methylquinolinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응 속도 vol.12, pp.12, 2009, https://doi.org/10.5762/kais.2011.12.12.5990
  13. 크롬(VI)-4-(Dimethylamino)pyridine에 의한 알코올류의 산화반응과 반응속도에 관한 연구 vol.14, pp.1, 2009, https://doi.org/10.5762/kais.2013.14.1.499
  14. Hydrodehalogenation of Haloarenes by a Sodium Hydride–Iodide Composite vol.129, pp.7, 2009, https://doi.org/10.1002/ange.201611495
  15. Hydrodehalogenation of Haloarenes by a Sodium Hydride–Iodide Composite vol.56, pp.7, 2009, https://doi.org/10.1002/anie.201611495