DOI QR코드

DOI QR Code

He-Polymer Microchip Plasma (PMP) System Incorporating a Gas Liquid Separator for the Determination of Chlorine Levels in a Sanitizer Liquid

  • Oh, Joo-Suck (Department of Chemistry, Dankook University, NSBT, Yongin) ;
  • Kim, Y.H. (Department of Chemistry, Dankook University, NSBT, Yongin) ;
  • Lim, H.B. (Department of Chemistry, Dankook University, NSBT, Yongin)
  • Published : 2009.03.20

Abstract

The authors describe an analytical method to determine total chlorine in a sanitizer liquid, incorporating a lab-made He-rf-plasma within a PDMS polymer microchip. Helium was used instead of Ar to produce a plasma to achieve efficient Cl excitation. A quartz tube 1 mm i.d. was embedded in the central channel of the polymer microchip to protect it from damage. Rotational temperature of the He-microchip plasma was in the range 1350-3600 K, as estimated from the spectrum of the OH radical. Chlorine was generated in a volatilization reaction vessel containing potassium permanganate in combination of sulfuric acid and then introduced into the polymer microchip plasma (PMP). Atomic emission lines of Cl at 438.2 nm and 837.7 nm were used for analysis; no emission was observed for Ar plasma. The achieved limit of detection was 0.81 ${\mu}g\;mL^{-1}$ (rf powers of 30-70 W), which was sensitive enough to analyze sanitizers that typically contained 100-200 ${\mu}g\;mL^{-1}$ of free chlorine in chlorinated water. This study demonstrates the usefulness of the devised PMP system in the food sciences and related industries.

Keywords

References

  1. Burnett, A. B.; Iturriaga, M. H.; Escartin, E. F. J. of Food Protection 2004, 67, 742
  2. Kwon, J.-Y.; Kim, B.-S.; Kim, G.-H. Korean J. of Food Science and Technology 2006, 38, 28
  3. Beuchat, L. R. J. of Food Protection 1999, 62, 845
  4. Nakahara, T.; Nishida, T. Spectrochimica Acta, Part B 1998, 53, 1209 https://doi.org/10.1016/S0584-8547(98)00147-5
  5. Pohl, P.; Zapata, I. J.; Amberger, M. A. Spectrochimica Acta, Part B 2008, 63, 415 https://doi.org/10.1016/j.sab.2007.12.005
  6. Tagami, K.; Uchida, S.; Hirai, I. Analytica Chimica Acta 2006, 570, 88 https://doi.org/10.1016/j.aca.2006.04.011
  7. Bass, A.; Chevalier, C.; Blades, M. W. J. Anal. At. Spectrom. 2001, 16, 919 https://doi.org/10.1039/b103507j
  8. Rahman, M. M.; Blade, M. W. Spectrochimica Acta Part B 1997, 52, 1983 https://doi.org/10.1016/S0584-8547(97)00080-3
  9. Sung, Y. I.; Lim, H. B. J. Anal. At. Spectrom. 2003, 18, 897 https://doi.org/10.1039/b303191h
  10. Bilgic, A. M.; Voges, E.; Engel, U.; Broekaert, J. A. C. J. Anal. At. Spectrom. 2000, 15, 579 https://doi.org/10.1039/b001647k
  11. Bilgic, A. M.; Engel, U.; Voges, E.; Uckelheim, M. K.; Broekaert, J. A. C. Plasma Sources Sci. Technol. 2000, 9, 1 https://doi.org/10.1088/0963-0252/9/1/301
  12. Iza, F.; Hopwood, J. Plasma Sources Sci. Technol. 2002, 11, 229 https://doi.org/10.1088/0963-0252/11/3/301
  13. Minayeva, O. B.; Hopwood, J. A. J. Anal. At. Spectrom. 2002, 17, 1103 https://doi.org/10.1039/b202121h
  14. Lim, H. B.; Kim, D.; Jung, T.; Houk, R. S.; Kim, Y. Analytica Chimica Acta 2005, 545, 119 https://doi.org/10.1016/j.aca.2005.04.067
  15. Houk, R. S.; Zhai, Y. Spectrochimica Acta, Part B 2001, 56, 1055 https://doi.org/10.1016/S0584-8547(01)00202-6
  16. Abdallah, M. H.; Mermet, J. M. Spectrochimica Acta, Part B 1982, 37, 391 https://doi.org/10.1016/0584-8547(82)80016-5
  17. Ishii, I.; Montaser, A. Spectrochimica Acta, Part B 1991, 5986 1197
  18. Sung, Y.-I.; Lim, H. B.; Houk, R. S. J. Anal. At. Spectrom. 2002, 17, 565 https://doi.org/10.1039/b110219m
  19. Mermet, J. M. Spectroscopic Diagnostics: Basic Concept in Inductively Coupled Plasma Emission Spectroscopy; Boumans, P. W. J. M., Ed.; John Wiley & Sons Inc.: NY., 1987; Part 2, Chapter 10, pp 368-372
  20. Miro, M.; Estela, J. M.; Cerda, V. Talanta 2004, 63, 201 https://doi.org/10.1016/j.talanta.2003.10.047
  21. Oh, J.; Lim, H. B. Spectrochimica Acta Part B 2008, 63, 1263 https://doi.org/10.1016/j.sab.2008.09.006
  22. Ryu, W. K.; Kim, D. H.; Lim, H. B.; Houk, R. S. Bull. Korean Chem. Soc. 2007, 28, 553 https://doi.org/10.5012/bkcs.2007.28.4.553
  23. NIST website: http://physics.nist.gov/PhysRefData/Handbook/

Cited by

  1. Mechanism of Viscous Oil Fire Flooding Dehumidification Equipment and Structure Optimization vol.6, pp.6, 2018, https://doi.org/10.3390/pr6060072
  2. Atomic spectrometry update. Industrial analysis: metals, chemicals and advanced materials vol.24, pp.12, 2009, https://doi.org/10.1039/b920784h