DOI QR코드

DOI QR Code

Effect of Graphite Nanofibers on Poly(methyl methacrylate) Nanocomposites for Bipolar Plates

  • Published : 2009.03.20

Abstract

In this work, high-aspect-ratio graphite nanofibers (GNFs) were used to improve the electrical, thermal, and mechanical properties of the poly(methyl methacrylate) (PMMA) polymer, as well as those of PMMA composites suitable for use in bipolar plates. In the result, an electrical percolation threshold for the composites was formed between 1 and 2 wt% GNF content. This threshold was found to be influenced strongly by the three separate stages of the meltblending process. The composites exhibited higher thermal and mechanical properties and lower thermal shrinkage compared with the neat PMMA. Thus, GNFs were demonstrated to have positive impacts on the thermo-mechanical properties of PMMA composites and showed, thereby, reasonable potential for use in composites employed in the fabrication of bipolar plates.

Keywords

References

  1. Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345 https://doi.org/10.1038/35104620
  2. Wagner, N. In Electrochemical Power Sources-fuel Cells in Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; Barsoukov, E.; Ross Macdonald, J., Eds.; John Wiley & Sons: 2005; p 497
  3. Wagner, N.; Kaz, T.; Friedrich, K. A. Electrochimica Acta 2008, 53, 7475 https://doi.org/10.1016/j.electacta.2008.01.084
  4. Larminie, J.; Dicks, A. In Fuel Cell Systems Explained; John Wiley & Sons: England, 2003
  5. Borup, R. L.; Vanderborgh, N. E. Mater. Res. Soc. Symp. Proc. 1995, 393, 151
  6. Hwang, I. U.; Yu, H. N.; Kim, S. S.; Lee, D. G.; Suh, J. D.; Lee, S. H.; Ahn, B. K.; Kim, S. H.; Lim, T. W. J. Power Sources 2008, 184, 90 https://doi.org/10.1016/j.jpowsour.2008.05.088
  7. Wang, H.; Sweikart, M. A.; Turner, J. A. J. Power Sources 2003, 115, 243 https://doi.org/10.1016/S0378-7753(03)00023-5
  8. Du, L.; Jana, S. C. J. Power Sources 2007, 172, 734 https://doi.org/10.1016/j.jpowsour.2007.05.088
  9. Larminie, J.; Dicks, A. In Fuel Cell Systems Explained; John Wiley & Sons: 2001
  10. Makkus, R. C.; Janssen, A. H. H.; Bruijn, F. A. de; Mallant, R. K. A. M. Fuel Cells Bull. 2000, 17, 5
  11. Wind, J.; Spah, R.; Kaiser, W.; Bohm, G. J. Power Sources 2002, 105, 256 https://doi.org/10.1016/S0378-7753(01)00950-8
  12. Davies, D. P.; Adcock, P. L.; Turpin, M.; Rowen, S. J. J. Power Sources 2000, 86, 237 https://doi.org/10.1016/S0378-7753(99)00524-8
  13. Tawfik, H.; Hung, Y.; Mahajan, D. J. Power Sources 2007, 163, 755 https://doi.org/10.1016/j.jpowsour.2006.09.088
  14. Hammel, E.; Tang, X.; Trampert, M.; Schmitt, T.; Mauthner, K.; Eder, A. Carbon 2004, 42, 1153 https://doi.org/10.1016/j.carbon.2003.12.043
  15. Seo, M. K.; Park, S. J. Macromol. Mater. Eng. 2004, 289, 368 https://doi.org/10.1002/mame.200300303
  16. Seo, M. K.; Park, S. J.; Lee, S. K. J. Colloid Interface Sci. 2005, 285, 306 https://doi.org/10.1016/j.jcis.2004.10.068
  17. Yang, J. H.; Kim, M. K.; Son, J. H.; Cho, H. J.; Kwon, Y. U. Bull. Korean Chem. Soc. 2007, 28, 1097 https://doi.org/10.5012/bkcs.2007.28.7.1097
  18. P$\ddot{o}$tschke, P.; Bhattacharyya, A. R.; Janke, A. Carbon 2004, 42, 965 https://doi.org/10.1016/j.carbon.2003.12.001
  19. Zhou, Y.; Pervin, F.; Lewis, L.; Jeelani, S. Mater. Sci. Eng. A 2008, 475, 157 https://doi.org/10.1016/j.msea.2007.04.043
  20. Moon, S. H.; Jin, W. J.; Kim, T. R.; Hahm, H. S.; Cho, B. W.; Kim, M. S. J. Ind. Eng. Chem. 2005, 11, 594
  21. Puglia, D.; Valentini, L.; Armentano, I.; Kenny, J. M. Diamond Relat. Mater. 2003, 12, 827 https://doi.org/10.1016/S0925-9635(02)00358-8
  22. Zhou, P.; Wu, C. W.; Ma, G. J. J. Power Sources 2007, 163, 874 https://doi.org/10.1016/j.jpowsour.2006.09.068
  23. Choi, K. C.; Lee, E. K.; Choi, S. Y. J. Ind. Eng. Chem. 2004, 10, 402
  24. Park, S. J.; Jang, Y. S.; Rhee, K. Y. J. Colloid Interface Sci. 2002, 245, 383 https://doi.org/10.1006/jcis.2001.8040