An Efficient Synthesis of 2-Phenyl-4H-1-benzothiopyran-4-ones from Thiosalicylic Acid

Jae In Lee
Deparment of Chemistry and Plant Resources Research Institute, College of Maural Science, Duksung Homen's Universiţ, Seoul 132-714, Korea. E-mail: jileeiäduksung ackr Received Vovember 28, 2008, Accepted January 31, 2009

Key Words: 2-Pheny 1-4H-1-benzothiopyran-4-ones. Thioflavones, Condensation, Cyclization

2-Phenyl-4H-1-benzothiopyran-4-ones (thioflavones) are the thio analogenes of flavones ${ }^{1}$ which are a class of naturally occuring pharmacologically active compounds. The thioflavones also exhibit various pharmacological activities ${ }^{2}$ such as antimalarial. antimicrobial and antifungal activity and are useful as potent inhibitors of steroid sulfatase. ${ }^{3}$ In general. 2-phenyl-4H-1-benzothiopyran-t-ones are synthesized by the condensation of thiophenols with ethyl benzoylacetates in polyphosphoric acid at $90^{\circ} \mathrm{C}$, but the yields are low to moderate. The cyclization of ethyl β-(arylthio)cinnamates. derived from Michael addition of thiophenols to ethyl phenylpropiolates. with stannic chloride or phosphorus pentoxide/methanesulfonic acid gives 2-phenyl-4H-1-benzothiopyran-4-ones. ${ }^{\text {. }}$ However. this method could not be applied for the synthesis of methosy substituted thioflavones because competitive cyclization into the cinnamyl aromatic ring. rather than the sulfur-bearing ring, occurs when cinnamyl ring is activated by methosy substituents. The reaction of S-aroyl derivatives of thiosalicylic acid with A-phenyl(triphenylphosphoranylidene) ethemine ${ }^{6}$ or (trimethylsilyl)methy lenetriphenylphosphorane leads to the acylphosphoranes which undergo subsequent intramolecular Wittig cyclization in refluxing THF to afford 2-phenyl-4 H-1-benzothiopyran-4-ones. but the separation of phenyl isocyanate is tedious. Altematively. the condensation of methyl thiosalicy late with trilithiated acetoacetanilides ${ }^{8}$ or dilithiated N -benzoylhydrazones ${ }^{9}$ with excess lithium diisopropylamide gives the \dot{C}-acylated intermediates which undergo subsequent cyclodehydration and hydrolysis with $3 \mathrm{~N}-\mathrm{HCl}$ under reflux to afford 2-phenyl- 4 H -1-benzothiopy ran-t-ones in moderate to high yields.

Herein. we describe a new efficient synthesis of 2-phenyl$4 H$-1-benzothiopyran-4-ones via 2^{\prime}-mercaptoacetophenone in overall high y ields under the mild conditions. 2 '-Mercaptoacetophenone $\mathbf{2}$ was directly prepared from thiosalicylic acid 1 and methyllithium in DME in 80\% y ield according to our
previous method ${ }^{\text {li) }}$ (Scheme 1). The condensation of the dilithiated anion of $\mathbf{2}$ with benzoylating reagent was initially studied using benzoyl chloride. The addition of benzoyl chloride to a solution of the lithum dianion, generated from compound 2 and two equivalents of lithium diisopropylamide in THF. at $-78^{\circ} \mathrm{C}$ and on stirring for 2 h between $-78^{\circ} \mathrm{C}$ and room temperature gave 1-(2-mercaptophenyl)-3-phenyl-1, 3-propanedione 4 a in only 15% yield. The use of benzoyl cyanide increased the yield of ta to 67% under the same reaction conditions. However. the reaction of the lithium dianion of 2 with N -methoxy- N -methyl benzamide 3aat room temperature for 16 h proceeded well to give +a in 84% yield. Interestingly. ${ }^{1} \mathrm{H}$ NMR spectra of + showed C_{2} methylene signals at $3.22-3.98 \mathrm{ppm}$ with two doublets. indicating that 4 exist mostly as keto forms.

The cyclodelydration of ta was attempted using 1 equiv of sulfuric acid in various solvents such as $\mathrm{HOAc} . \mathrm{CH}_{3} \mathrm{CN}$. EtOH , and THF. Under these conditions. the desired 2-phenyl$4 H-1$-benzothiopyran-4-one 5 a was obtained in 93%, 94%, 92% and 91% yield. respectively. after $0.5 \mathrm{hL} \mathrm{l} \mathrm{h}$.36 h , and 48 h . respectively. Although the use of acetic acid as a solvent gave excellent yield of $\mathbf{5 a}$ in very short time (vide supra). acetic acid is corrosive. irritant. and pungent. and troublesome to separate and therefore $\mathrm{CH}_{3} \mathrm{CN}$ was chosen as a suitable solvent for the cyclodehydration. The cyclodehydration of $\mathbf{t a}$ using 1 equiv of polyphosphoric acid in $\mathrm{CH}_{3} \mathrm{CN}$ was also tested at room temperature. However. the reaction was rather sluggish and after 48 h the yield was 92%. Thus, 1 equiv of sulfuric acid in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature for $\mathrm{I} h$ is considered as optimum reaction conditions for obtaining high yield (94%) of product ta. The same reaction conditions were adopted for the synthesis of other products.

As shown in Table 1, various 2 -pheny 1- $4 H-1$-benzothiopy -ran-4-ones were synthesized in overall high yields ($58-65 \%$) from the starting $\mathbf{1}$. The reaction worked well both for the

$R^{1}, R^{2}: R^{\prime} ; R^{4}=H, C l, M e, O M e$

Table 1. Preparation of compounds 4 and 2-phenyl-4H-1-benzo-thiopyran-4-ones (5) from thiosalicylic acid

Entry	R^{1}	R^{2}	R^{3}	R^{4}	Isolated yields, \%	
\mathbf{a}	H	H	H	H	84	94
\mathbf{b}	Cl	H	H	H	87	91
\mathbf{c}	OCH_{3}	H	H	H	84	93
\mathbf{d}	H	Cl	H	H	84	91
\mathbf{e}	H	H	Cl	H	85	89
\mathbf{f}	H	H	CH_{3}	H	85	87
\mathbf{g}	H	H	OCH_{3}	H	87	93
\mathbf{h}	H	OCH_{3}	OCH_{3}	H	80	91
\mathbf{i}	H	OCH_{3}	OCH_{3}	OCH_{3}	81	90

${ }^{\sigma}$ Chromatographic yields. ${ }^{5}$ Recrystallized vields.
electron withdrawing substituent such as chloro group (5d. 5e) and electron donating substituents such as methyl ($\mathbf{5 f}$) and methony group ($\mathbf{5 g - 5 i}$). The reaction also proceeded well regardless of the number and the position of methoxy substituents under the present reaction conditions. Furthermore, the ortho substituted chloro (5b) and methoxy group (5c) did not affect the efficacy of the cyclodehydration of 4 .

In conclusion the present method provides a new efficient synthesis of 2-phenyl-4H-1-benzothiopyran-4-ones from the starting 1. It has the advantage of high yield synthesis, convenience and versatility of the reaction under the mild conditions and therefore. may be widely utilized for the synthesis of 2-phenyl-4H-1-benzothiopyran-4-ones.

Experimental Section

Preparation of 1-(2-mercaptophenyl)-3-phenyl-1,3-propanedione ta (General procedure). To a solution of 2'-mercaptoacetophenone ($609 \mathrm{mg}, 4.0 \mathrm{mmol}$) in THF (12 mL) was added lithium diisopropylamide ($2.0 \mathrm{M} .2 .1 \mathrm{~mL} .+2 \mathrm{mmol}$) at -20 ${ }^{\circ} \mathrm{C}$. The stirring was continued for 1.5 h between $-20^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$ and then a solution of v -methoxy- V -methyl benzamide (661 mg .4 .0 mmol) in THF (6 mL) was added to the light tan solution. The mixture was allowed warm to room temperature and stirred for 16 h . The resulting light yellow minture was quenched with $1 \mathrm{~N}-\mathrm{HCl}(3 \mathrm{~mL})$ and THF was evaporated $i n$ vacto. The mixture was poured into $0.5 \mathrm{~N}-\mathrm{HCl}(30 \mathrm{~mL})$. extracted with methy lene chloride ($3 \times 25 \mathrm{~mL}$), and washed with brine (30 mL). The combined organic phases were dried over $\mathrm{MgSO} \mathrm{H}_{4}$ filtered. and concentrated in vacto. The residue was purified by silica gel column chromatography using 30% $\mathrm{EtOAc} / \mathrm{m}$-hevane to give $\mathbf{4 a}(861 \mathrm{mg} .84 \%) \mathrm{mp} 116-118^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.15\left(\mathrm{dd} . J_{1}=8.2 \mathrm{~Hz}, J_{2}=1.5\right.$ $\mathrm{Hz} .1 \mathrm{H}), 7.66-7.71(\mathrm{~m}, 2 \mathrm{H}) .7 .38-7.47(\mathrm{~m} .4 \mathrm{H}), 7.20-7.26(\mathrm{~m}$, $2 \mathrm{H}) .3 .44(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}) .3 .25(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}) .3 .09$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 193.5,142.6,138.8$. 134.0. 129.6, 128.9 (overlapped), 128.8, 127.6, 125.5, 124.9. 85.5. 53.7; FT-IR (KBr) 3058, 2914. $1658(\mathrm{C}=\mathrm{O}), 1582$. 1435. 1296. $1093.760 .690 \mathrm{~cm}^{-1}:$ MS mz (\%) $256\left(\mathrm{M}^{-}, 20\right)$. 238 (100). 223 (51). 151 (50), 136 (60), 105 (77).

Preparation of 2 -phenyl- +H -1-benzothiopyran-t-one 5a (General procedure). To a solution of ta (769 mg .3 .0 mmol)
in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ was added conc $\mathrm{H}_{2} \mathrm{SO}_{4}(160 \mu \mathrm{~L}, 3.0$ mmol) at room temperature. The resulting nuixture containing precipitate was stirred for 1 h and $\mathrm{CH}_{3} \mathrm{CN}$ was evaporated in vacuo. The nuixture was poured into saturated NaHCO_{3} solution (30 mL) and extracted with methylene chloride ($3 \times$ 20 nL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated in vacho. The residue was recrystallized twice from 10% EtOAch-hexane to give $\mathbf{5 a}$ ($672 \mathrm{mg} .94 \%$) as a pale yellow solid. $\mathrm{mp} 125-126^{\circ} \mathrm{C}$ (lit. 126 $\left.{ }^{\circ} \mathrm{C}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d} . J=7.7 \mathrm{~Hz}, \mathrm{lH})$, $7.60-7.71(\mathrm{~m}, 4 \mathrm{H}) .7 .52-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 3 \mathrm{H})$, $7.24(\mathrm{~s} .1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ 180.8. 153.0. $137.7,136.5,131.6 .130 .9,130.8$. 129.3. 128.6, 127.8. 126.9, 126.5. 123.4: FT-R (KBr) 3066. 1620 ($\mathrm{C}=\mathrm{O}$), 1587. 1335. 1098. $759.696 \mathrm{~cm}^{-1}:$ MS mz (\%) $238\left(\mathrm{M}^{+} .100\right) .210(95) .136$ (+6), 108 (22).

2-(2'-Chlorophenyl)-4H-1-benzothiopyran-4-one (5b). mp $129-130{ }^{\circ} \mathrm{C},{ }^{3} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.57$ (d. $J=7.8 \mathrm{~Hz}$. 1H). 7.61-7.65 (m, 2H), 7.50-7.59 (m, 2H), 7.34-7.46 (m. $3 \mathrm{H}) .7 .02(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 180.4,150.4$. 138.1, 135.2, 132.6. 131.7, 131.1. 130.9. 130.7, 130.5. 128.7. 127.9. 127.2, 127.1, 126.3: FT-IR (KBr) 3059. 1615 (C=O), $1590.1327,1100.863 .764 \mathrm{~cm}^{-1}: \operatorname{MS} m z(\%) 27+\left(\mathrm{M}^{-}+2,34\right)$. $272\left(\mathrm{M}^{+}, 98\right), 246(44) .244$ (100), 136 (40). 108 (24).

2-(2'-Methoxyphenyl)-4H-1-benzothiopyran-4-one ($\mathbf{5 c}$). $\operatorname{mp} 130-131^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d} . J=7.5$ $\mathrm{Hz} . \mathrm{IH}) .7 .57-7.62(\mathrm{~m} .2 \mathrm{H}) .7 .51-7.55(\mathrm{~m} .1 \mathrm{H}) .7 .42-7.47(\mathrm{~m}$. $2 \mathrm{H}) .7 .16(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.08(\mathrm{~m} .2 \mathrm{H}) .3 .86(\mathrm{~s} .3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.8 .156 .4,150.3,138.8,131.6,131.3$. $130.9,130.3,128.5 .127 .5,126.8$. 126.2. 125.4, 120.9. 111.7, 55.7: FT-IR (KBr) $3050,2983,1627(\mathrm{C}=\mathrm{O})$. 1589. 1463. 1251, $1015.733 \mathrm{~cm}^{-1}$. MS $m z(\%) 268(\mathrm{M}, 100), 137(60)$, 136 (29). 131 (31), 108 (20).

2-(3'-Chlorophenyl)-4 H -1-benzothiopyran-4-one (5 d). mp $14+146{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d} . J=7.6 \mathrm{~Hz}$. 1H). 7.63-7.68 (m, 3H), 7.52-7.57 (m, 2H), 7.41-7.51 (m. 2H). $7.20(\mathrm{~s}, 1 \mathrm{H}){ }^{12}{ }^{12} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 180.6,151.2$. $138.3,137.3,135.3 .131 .8,130.8$. 130.7. 130.5, 128.6. 128.0, 127.1, 126.5, 125.1, 123.9: FT-IR (KBr) 3057, 1634 (C=O), 1593,1327 . $1102,885,768.731 \mathrm{~cm}^{-1}$; MS $m z$ (\%) 274 $\left(\mathrm{M}^{-}+2.35\right), 272\left(\mathrm{M}^{+} .100\right), 246(35), 244(86), 136(45), 108$ (24).

2-(4'-Chlorophenyl)-4 H -1-benzothiopyran-4-one (5e). mp $168-169^{\circ} \mathrm{C}$ (lit. ${ }^{9{ }^{9 / 1}} 161-165^{\circ} \mathrm{C}$). ${ }^{\mathrm{H}} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{2}$) δ $8.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .7 .61-7.66(\mathrm{~m}, 2 \mathrm{H}) .7 .62(\mathrm{~d}, J=8.7$ Hz .2 H). $7.52-7.58$ (m, 1H). 7.47 (d. $J=8.7 \mathrm{~Hz} .2 \mathrm{H}$). 7.19 (s. $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 180.7$. $151.5,137.3$. 137.1. 135.0. 131.7. 130.8. 129.6, 128.6. 128.2, 127.9. 126.5, 123.5: FT-IR (KBr) 3015, $1630(\mathrm{C}=\mathrm{O}), 1588,1326,1088,828.706$ $\mathrm{cm}^{-1}:$ MS mz (\%) $274\left(\mathrm{M}^{-}+2,33\right) .272\left(\mathrm{M}^{+} .100\right) .246(41)$. 244 (98). 136 (49), 108 (22).

2-(t'-Methylphenyl)-4H-1-benzothiopyran-t-one (5f). mp $118-119{ }^{\circ} \mathrm{C}:{ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.54$ (d. $J=7.7 \mathrm{~Hz}$. $1 \mathrm{H}) .7 .51-7.65(\mathrm{~m}, 3 \mathrm{H}) .7 .61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) .7 .29(\mathrm{~d} . J=$ 7.9 Hz .2 H). 7.23 (s. IH). 2.4 I (s. 3 H). ${ }^{13} \mathrm{C}$ NMR (75 MHz . $\left.\mathrm{CDCl}_{2}\right) \delta 180.9,153.1,141.3$. 137.7, 133.7. 131.5. 130.9. 130.0, 128.6. 127.7. 126.8. 126.5, 122.8. 21.4; FT-IR (KBr) 3056. $1618(\mathrm{C}=\mathrm{O})$. $1589,1441.1332,1102,816.778 \mathrm{~cm}^{-1}$:

MS mz (\%) $252\left(\mathrm{M}^{+} .100\right) .251$ (29). 224 (96), 136 (42), 108 (22).

2-(4^{+}-Methoxyphenyl)-4H-1-benzothiopyran-4-one (5 g). mp $124-125^{\circ} \mathrm{C}$ (lit. $126-127^{\circ} \mathrm{C}$): ${ }^{\mathrm{H}} \mathrm{NMR}\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta$ 8.53 (d. $J=7.7 \mathrm{~Hz} .1 \mathrm{H}$). 7.65 (d. $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$). $7.58-7.65$ $(\mathrm{m}, 2 \mathrm{H}) .7 .50-7.58(\mathrm{~m} . \mathrm{lH}), 7.19(\mathrm{~s} .1 \mathrm{H}), 7.00(\mathrm{~d} . J=8.9 \mathrm{~Hz}$. $2 \mathrm{H}) .3 .87(\mathrm{~s}, 3 \mathrm{H}):{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{I} 80.9 .161 .8$. 152.7. 137.6. 131.5, 130.9. 128.8. 128.5, 128.3. 127.6, 126.4. 122.2, 114.7. 55.5: FT-IR (KBr) 3063. 2989, 1626 (C=O). 1604. 1508. 1435. 1267. 1017. $771 \mathrm{~cm}^{-1}:$ MS mz (\%) 268 $\left(\mathrm{M}^{-}, 100\right) .240(66) .225(49), 132(42), 108$ (18)

2-(3',4'-Dimethoxyphenyl)-4H-1-benzothiopyran-4-one (5h). mp 149-150 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{9,} 1+5-148^{\circ} \mathrm{C}$) ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, J=7.5 \mathrm{~Hz} .1 \mathrm{H}) .7 .61-7.66(\mathrm{~m} .2 \mathrm{H})$, $7.51-7.59(\mathrm{~m} .1 \mathrm{H}) .7 .31$ (dd. $\left.J_{1}=8.4 \mathrm{~Hz} . J_{2}=2.2 \mathrm{~Hz} .1 \mathrm{H}\right) .7 .21$ $(\mathrm{s}, 1 \mathrm{H}) .7 .19(\mathrm{~d} . J=2.2 \mathrm{~Hz} .1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .3 .96$ (s. 3 H). 3.95 (s. 3 H): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 180.9$. 152.8 , 151.4. 149.5, 137.6, 131.5. 130.9, 129.1. 128.5, 127.7. 126.4. 122.3. 120.0, 111.3. 109.6, 56.1 (overlapped OCH_{3}): FT-IR (KBr) 3012. 2939. 1614 (C=O), 1587, 1509. 1439. 1265. 1143. 1019, 849, $784 \mathrm{~cm}^{-1} ; \operatorname{MS~mz~(\%)~} 298\left(\mathrm{M}^{+}, 100\right)$. 270 (16), 255 (23), 162 (24).

2-(3',4',5'-Trimethoxyphenyl)-4H-1-benzothiopyran-4-on e (5i). mp 111-112 ${ }^{\circ} \mathrm{C}:{ }^{\text {' }} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \dot{\delta} 8.54(\mathrm{~d}$. $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62 \cdot 7.68(\mathrm{~m}, 2 \mathrm{H}) .7 .53 \cdot 7.61(\mathrm{~m} . \mathrm{lH}) .7 .23(\mathrm{~s}$. 1H). 6.92 (s. 2 H) $3.95(\mathrm{~s} .6 \mathrm{H}) .3 .92(\mathrm{~s} .3 \mathrm{H}):{ }^{13} \mathrm{C} \operatorname{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.5,153.7,153.0,140.3 .137 .5 .132 .0$. $131.7,131.0,128.6,127.8 .126 .4 .123 .0 .104 .2$. 61.0. 56.3 : FT-IR (KBr) 3026. 2950. 1630 ($\mathrm{C}=\mathrm{O}$) . 1586. 1507. 1450. 1328. $1245,1131,1003.773,732 \mathrm{~cm}^{-1}: \operatorname{MS} m z(\%) 328\left(\mathrm{M}^{+}\right.$. 100). 313 (74). 285 (16). 257 (17).

Acknowledgments. This research was supported by the Duksung Women's University Research Grants 3000000825 (2008).

References

1. (a) Menichincheri, M.; Ballinari, D.; Bargiotti, A.; Bonomini, L.; Ceccarelli, W.; D'Alessio, R.; Fretta, A.; Moll, J.; Polucci, P;Soncini, C.: Tibolla, M.: Trosset, J.-Y.: Vanotti, E. J. Med. Chem. 2004, 47, 6466. (b) Fernandes, D. C.; Regasini, L. O.; Vellosa, J. C. R.; Pauletti, P. M.. Castro-Gamboa, I.; Bolzani, V. S.: Oliveira, O. M. M.; Silva, D. H. S. Chem. Pham. Bull. 2008. 56,723.
2. (a) Razdant, R. K.; Bruni, R. T.; Metha, A. C.; Weinhardt, K. K.; Papanastassiou, Z. B. J. Hed. Chem. 1978, 21, 643. (b) Nakazumi, H.; Ueyama, T.; Kitano, T. J. Heterocycl. Chen. 1985, 22, 1593. (c) Taylor, A. W;; Dean, D. K. Tetrahtedron Lett. 1988, $29,1845$.
3. Horvath, A.; Nussbaumer, P.; Wolft, B.; Billich, A. J. Med. Chem. 2004, 47, 4268.
4. (a) Nakazumi, H.; Ueyama, T.; Kitano, T. J. Heterocycl. Chem. 1984, 21, 193. (b) Nakazumi, H.; Watanabe, S.; Kitaguchi, T.; Kitano, T. Bull. Chem. Soc. Jpm. 1990, 63, 847. (c) Wang, H.-K.; Bastow, K. F.; Cosentino, L. M.; Lee, K.-H. J. Hed. Chem. 1996. 39, 1975.
5. (a) Schneller, S. W. Ads. Heteroctcl. Chem. 1975, 18, 59. (b) Wadsworth, D. H.; Detty, M. R. J. Org. Chem. 1980, 45, 4611 .
6. (a) Kumar, P.; Rao, A. T.; Pandey, B. J. Chem. Soc., Chem. Commun. 1992, 1580 . (b) Kumar, P.; Rao, A. T.; Pandey, B. Swith. Conmun. 1994, 24, 3297.
7. Kumar, P.; Bodas, M. S. Tetrahedron 2001, 57, 9755.
8. Angel, A. J.; Finefrock, A. E.; French, K. L.; Hurst, D. R; Williams, A. R.; Rampey, M. E.; Studer-Martinez, S. L.; Beam, C. F. Can. J. Chem. 1999, 77, 94.
9. (a) French, K. L.; Angel, A. J.; Williams A. R.; Hurst, D. R.; Beam, C. F. J. Heterocycl. Chem. 1998, 35, 45 . (b) Foster, C. E.; Mackie, P. R. In Comprehensive Organic Functional Group Transfomations II, Katritzky, A. R.; Taylor, R. J. K.; Tones, K., Eds.; Elsevier LTD: Oxford U. K., 2005; Vol. 3, p 244.
10. Lee, T. I. Bull. Korean Chem. Soc 2008, 29, 1263.
