References
- Zhang, C.; Johnson, L. W. Anal. Chem. 2009, 81, 3051 https://doi.org/10.1021/ac802737b
- Medintz, I. L.; Konnert, J. H.; Clapp, A. R.; Stanish, I.; Twigg, M. E.; Mattoussi, H.; Mauro, J. M.; Deschamps, J. R. Proc. Natl. Acad. Sci. USA 2004, 101, 9612 https://doi.org/10.1073/pnas.0403343101
- Patolsky, F.; Gill, R.; Weixmann, Y.; Mokari, T.; Banin, U.; Willner, I. J. Am. Chem. Soc. 2003, 125, 13918 https://doi.org/10.1021/ja035848c
- Voss, S.; Fischer, R.; Jung, G.; Wiesmüller, K.; Brock, R. J. Am. Chem. Soc. 2007, 129, 554 https://doi.org/10.1021/ja065016p
- Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435 https://doi.org/10.1038/nmat1390
- Maxwell, D. J.; Taylor, J. R.; Nie, S. J. Am. Chem. Soc. 2002, 124, 9606 https://doi.org/10.1021/ja025814p
- Chen, X.; Zehnbauer, B.; Gnirke, A.; Kwok, P. Proc. Natl. Acad. Sci. USA 1997, 94, 10756 https://doi.org/10.1073/pnas.94.20.10756
- Dubertet, B.; Calame, M.; Libchaber, A. L. Nat. Biotechnol. 2001, 19, 365 https://doi.org/10.1038/86762
- Tyagi, S.; Kramer, F. R. Nat. Biotechnol. 1996, 14, 303 https://doi.org/10.1038/nbt0396-303
- Kow, Y. W.; Dare, A. Methods 2000, 22, 164 https://doi.org/10.1006/meth.2000.1057
- Kobu, K.; Ide, H.; Wallace, S. S.; Kow, Y. Biochemistry 1992, 31, 3703 https://doi.org/10.1021/bi00129a020
- Atamna, H.; Cheung, I.; Ames, B. N. Proc. Natl. Acad. Sci. USA 2000, 97, 686 https://doi.org/10.1073/pnas.97.2.686
- Liu, B.; Yang, X.; Wang, K.; Tan. W.; Li, H.; Tang, H. Anal. Biochem. 2007, 366, 237 https://doi.org/10.1016/j.ab.2007.04.049
- Inoue, M.; Shen, G.; Chaudhry, M. A.; Galick, H.; Blaisdell, J. O.; Wallace, S. S. Radiat. Res. 2004, 161, 409 https://doi.org/10.1667/3163
- Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J.; Chen, H.; Huo, Q. J. Am. Chem. Soc. 2008, 130, 2780 https://doi.org/10.1021/ja711298b
- Lindahl, T.; Ljungquist, S.; Siegert, W.; Sperens, B. J. Biol. Chem. 1977, 252, 3286
- Takeuchi, M.; Lillis, R.; Demple, B.; Takeshita, M. J. Biol. Chem. 1994, 269, 21907
- Rabow, L. E.; Kow, Y. W. Biochemistry 1997, 36, 5084 https://doi.org/10.1021/bi963005a
- http://www.appliedbiosystems.com/support/techtools/calc/
Cited by
- Templated chemistry for monitoring damage and repair directly in duplex DNA vol.48, pp.65, 2012, https://doi.org/10.1039/c2cc34060g
- Luminescent oligonucleotide-based detection of enzymes involved with DNA repair vol.4, pp.10, 2013, https://doi.org/10.1039/c3sc51228b
- Monitoring eukaryotic and bacterial UDG repair activity with DNA-multifluorophore sensors vol.41, pp.12, 2013, https://doi.org/10.1093/nar/gkt309
- In Vitro Fluorogenic Real-Time Assay of the Repair of Oxidative DNA Damage vol.16, pp.11, 2015, https://doi.org/10.1002/cbic.201500184
- A Novel Approach for the Detection of BER Enzymes by Real-Time PCR vol.38, pp.1, 2017, https://doi.org/10.1002/bkcs.11055
- Imaging the Enzymatic Reaction of Urease Using Liquid Crystal-Based pH Sensor vol.32, pp.12, 2009, https://doi.org/10.5012/bkcs.2011.32.12.4377
- Direct Fluorescence Monitoring of DNA Base Excision Repair vol.124, pp.7, 2009, https://doi.org/10.1002/ange.201108135
- Direct Fluorescence Monitoring of DNA Base Excision Repair vol.51, pp.7, 2009, https://doi.org/10.1002/anie.201108135