DOI QR코드

DOI QR Code

Depurination of Nucleosides and Calf Thymus DNA Induced by 2-Bromopropane at the Physiological Condition

  • Published : 2009.10.20

Abstract

Depurination, the release of purine bases from nucleic acids by hydrolysis of the N-glycosidic bond, gives rise to alterations of the cell genome. Though cells have evolved mechanisms to repair these lesions, unrepaired apurinic sites have been shown to have two biological consequences: lethality and base substitution errors. 2-Bromopropane (2-BP) is used as an intermediate in the synthesis of pharmaceuticals, dyes, and other organics. In addition, 2-BP has been used as a replacement for chloroflurocarbons and 1,1,1-trichloroethane as a cleaning solvent in electronics industry. However, 2-BP was found to cause reproductive and hematopoietic disorders in local workers exposed to it. Owing to the toxicity of 2-BP, there has been a tendency to use 1-BP as an alternative cleaning solvent to 2-BP. However, 1-BP has also been reported to be neurotoxic in rats. Though $N^7$-guanine adduct of 2-BP has been reported previously, massive depurination of the nucleosides and calf thymus DNA was observed in this study. We incubated the nucleosides (ddG, dG, guanosine, ddA, dA and adenosine) with excess amount 2-BP at the physiological condition (pH 7.4, $37\;{^{\circ}C}$), which were analyzed by HPLC and LC-MS/MS. In addition, the time and dose response relationship of depurination in nucleosides induced by 2-bromopropane at the physiological condition was investigated. Similarly, incubation of calf-thymus DNA with the excess amount 2-BP at the physiological condition was also performed. In addition, the time and dose response relationship of depurination in calf-thymus DNA induced by 2-BP at the physiological condition was investigated. Those results suggest that the toxic effect of 2-BP could be both from the depurination of nucleosides and DNA adduct formation.

Keywords

References

  1. Kunkel, T. A. Proc. Natl. Acad. Sci. USA 1984, 81, 1494. https://doi.org/10.1073/pnas.81.5.1494
  2. Vousden, K. H.; Bos, J. L.; Marsheall, C. J.; Phillips, D. H. Proc. Natl. Acad. Sci. USA 1986, 83, 1222. https://doi.org/10.1073/pnas.83.5.1222
  3. Lindahl, T.; Andersson, A. Biochemistry 1972, 11, 3618. https://doi.org/10.1021/bi00769a019
  4. Lindahl, T. Ann. Rev. Biochem. 1982, 51, 61. https://doi.org/10.1146/annurev.bi.51.070182.000425
  5. Drake, J. W.; Baltz, R. H. Ann. Rev. Biochem. 1976, 45, 11. https://doi.org/10.1146/annurev.bi.45.070176.000303
  6. Schaaper, R. M.; Leob, L. A. Proc. Natl. Acad. Sci. USA 1981, 78, 1773. https://doi.org/10.1073/pnas.78.3.1773
  7. Schaaper, R. M.; Glickman, B. W.; Loeb. L. A. Mutat. Res. 1982, 106, 1. https://doi.org/10.1016/0027-5107(82)90186-5
  8. Schaaper, R. M.; Loeb, L. A. Mutat. Res. 1982, 105, 19. https://doi.org/10.1016/0165-7992(82)90202-0
  9. Loeb, L. A. Cell 1985, 40, 483 https://doi.org/10.1016/0092-8674(85)90191-6
  10. Schaaper, R. M.; Kunkel, T. A.; Loeb, L. A. Proc. Natl. Acad. Sci. USA 1983, 80, 487. https://doi.org/10.1073/pnas.80.2.487
  11. Chakravarti, D.; Mailander, P. C.; Li, K. M.; Higginbatham, S.; Zhang, H. L.; Gross, M. L.; Meza, J. L.; Cavalieri, E. L.; Rogan, E. G. Oncongene 2001, 20, 7945. https://doi.org/10.1038/sj.onc.1204969
  12. Chakravarti, D.; Mailander, P. C.; Cavalieri, E. L.; Rogan, E. G. Mutat. Res. 2000, 456, 17. https://doi.org/10.1016/S0027-5107(00)00102-0
  13. HSDB. Hazardous Substances Data Bank, Bethesda (MD): National Institutes of Health, 2001. Available from URL: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB.
  14. Kim, Y.; Jung, K.; Hwang, T.; Jung, G.; Kim, H.; Park, J.; Kim, J.; Park, J.; Park, D.; Park, S.; Choi, K.; Moon, Y. Scand. J. Work Environ. Health 1996, 22, 387 https://doi.org/10.5271/sjweh.159
  15. Kim, Y.; Park, J.; Moon, Y. Toxicol. Lett. 1999, 108, 309.
  16. Park, J. S.; Kim, Y.; Park, D. W.; Choi, K. S.; Park, S. H.; Moon, Y. H. J. Occup. Health 1997, 39, 138. https://doi.org/10.1539/joh.39.138
  17. Ichihara, G.; Ding, X.; Yu, X.; Wu, X.; Kamijima, M.; Peng, S.; Jiang, X.; Takeuchi, Y. Am. J. Ind. Med. 1999, 35, 523. https://doi.org/10.1002/(SICI)1097-0274(199905)35:5<523::AID-AJIM10>3.0.CO;2-W
  18. Yu, X.; Ichihara, G.; Kitoh, J.; Xie, Z.; Shibata, E.; Kamijima, M.; Asaeda, N.; Hisanaga, N.; Takeuchi, Y. Toxicology 1999, 135, 87. https://doi.org/10.1016/S0300-483X(99)00053-0
  19. Takeuchi, Y.; Ichihara, G.; Kamijima, M. J. Occup. Health 1997, 39, 179. https://doi.org/10.1539/joh.39.179
  20. The exposure criteria of chemical and physical factors, Korean Ministry of Labor, 1998.
  21. Patty, F. A. Industrial Hygiene and Toxicology; Irish, D. D., Ed.; Interscience: New York, 1962; Vol. 2, p 1249.
  22. Sax, N. I. Dangerous Properties of Industrial Materials; Van Nostrand Reinhold: New York, 1968; p 923.
  23. Sekiguchi, S.; Suda, M.; Zhai, Y. L.; Honma, T. Toxicol. Lett. 2002, 126, 41. https://doi.org/10.1016/S0378-4274(01)00429-5
  24. Zhao, L.-X.; Kim, E.-K.; Lim, H.-T.; Moon, Y.-S.; Kim, N.-H.; Kim, T.-H.; Choi, H.; Chae, W.; Jeong, T. C.; Lee, E. S. Arch. Pharm. Res. 2002, 25, 39. https://doi.org/10.1007/BF02975258
  25. Thapa, P.; Sherchan, J.; Karki, R.; Jeong, T. C.; Lee, E. S. J. Appl. Pharmacol. 2007, 15, 224. https://doi.org/10.4062/biomolther.2007.15.4.224
  26. Kochetkov, N. K.; Budovskii, E. I. Organic Chemistry of Nucleic Acids; Plenum: New York, 1972; p 425.
  27. Singer, B.; Grunberger, D. Molecular Biology of Mutagens and Carcinogens; Plenum: New York, 1983; 16-96.
  28. Zoltewicz, J. A.; Clark, D. F.; Sharpless, T. W.; Grahe, G. J. Am. Chem. Soc. 1970, 92, 1741. https://doi.org/10.1021/ja00709a055
  29. York, J. L. J. Org. Chem. 1981, 46, 2171. https://doi.org/10.1021/jo00323a040
  30. Garrett, E. R.; Mehta, P. J. J. Am. Chem. Soc. 1972, 94, 8542. https://doi.org/10.1021/ja00779a041

Cited by

  1. Deadenylation of Adenine Based-Nucleosides and Calf thymus DNA Induced by Halogenated Alkanes at the Physiological Condition vol.30, pp.10, 2009, https://doi.org/10.5012/bkcs.2009.30.10.2318
  2. Deguanylation of Guanine Based-Nucleosides and Calf Thymus DNA Induced by Halogenated Alkanes at the Physiological Condition vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.2949
  3. Non-Enzymatic Depurination of Nucleic Acids: Factors and Mechanisms vol.9, pp.12, 2009, https://doi.org/10.1371/journal.pone.0115950
  4. Chromatographic approaches for the characterization and quality control of therapeutic oligonucleotide impurities vol.32, pp.1, 2009, https://doi.org/10.1002/bmc.4088