DOI QR코드

DOI QR Code

Synthesis, Characterization and Biological Evaluation of a Series of Levofloxacin Carboxamide Analogues

  • Published : 2009.10.20

Abstract

In present work an attempt was made to synthesize various analogues of levofloxacin by introducing new functionality at carboxylic group position via nucleophilic substitution reaction. For this purpose the carboxylic group at C-6 was esterified and later subjected to nucleophilic attack at the carbonyl carbon by various aromatic amines. Structure of the analogues was confirmed by different techniques i.e. IR, $^1H$ NMR and mass spectrometry. The antibacterial activity of the derivatives was also assessed and compared with the parent against a series of Gram-positive and Gramnegative bacteria. A synergistic as well as antagonistic behavior was observed in these derivatives. Additionally unlike levofloxacin, the derivatives were also found to modulate oxidative burst response of phagocytes exhibiting moderate to significant inhibitory activity.

Keywords

References

  1. Mascellino, M. T.; Farinelli, S.; Iegri, F.; Iona, E.; De Simone, C. Drugs Expert. Clin. Res. 1998, 24, 139-151.
  2. Hooper, D. C. Biochim. Biophys. Acta 1998, 1400, 45-61. https://doi.org/10.1016/S0167-4781(98)00127-4
  3. Lesher, G. Y.; Froelich, E. J.; Gruett, M. D.; Bailey, J. H.; Brundage, R. P. Journal of Medicinal and Pharmaceutical Chemistry 1962, 5, 1063-1065. https://doi.org/10.1021/jm01240a021
  4. Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikura, T. Journal of Medicinal Chemistry 1980, 23(12), 1358-1363. https://doi.org/10.1021/jm00186a014
  5. Sanders, C. C. Rev. Infect Dis. 1988, 10(3), 516-527. https://doi.org/10.1093/clinids/10.3.516
  6. Stephen, V. Advances in Therapy 2008, 25, 979-994. https://doi.org/10.1007/s12325-008-0107-x
  7. Shen, L. L.; Mitscher, L. A.; Sharma, P. N.; Donnell, T. J.; Chu, D. W. T.; Cooper, C. S.; Rosen, T. Biochemistry 1989, 28, 3886-3894. https://doi.org/10.1021/bi00435a039
  8. Crumplin, G. C.; Smith, J. T. Antimicrob. Agents Chemother. 1975, 8(3), 251-261. https://doi.org/10.1128/AAC.8.3.251
  9. Sorgel, F.; Kinzig, M. Am. J .Med. 1993, 94, 44S-55S.
  10. Sato, K.; Hoshino, K.; Tanaka, M.; Hayakawa, L.; Osada, V. Antimicrob. Agents Chemother. 1992, 36, 1491-1498. https://doi.org/10.1128/AAC.36.7.1491
  11. Kuo, C. F.; Yeh, L. C.; Jia, Y. S.; Tai, C. W.; Cherng, C. T. J. Med. Chem. 2000, 43, 3809-3812. https://doi.org/10.1021/jm000153x
  12. Hooper, D. C.; Wolfson, J. S. In Quinolone Antimicrobial Agents, 2nd ed.; American Society for Microbiology: Washington, D. C. 1993; p 410-413.
  13. Seyyedehsamira, J.; Mohammad, H. M.; Loghman, F.; Saeed, E.; Saeed, R.; Mitra, H.; Farahnaz, P.; Manzarbanoo, E.; Abbas, S.; Alireza, F. European Journal of Medicinal Chemistry 2009, 44, 1205-1209. https://doi.org/10.1016/j.ejmech.2008.09.012
  14. Domagala, J. M.; Heifetz, C. L.; Hutt, M. P.; Mich, T. F.; Nichols, J. B.; Solomon, M.; Worth, D. F. J. Med. Chem. 1988, 31(5), 991- 1001. https://doi.org/10.1021/jm00400a017
  15. Chen, Y. L.; Fang, K. C.; Sheu, J. Y.; Hsu, S. L.; Tzeng, C. C. J. Med. Chem. 2001, 44, 2374-2377. https://doi.org/10.1021/jm0100335
  16. Foroumadi, A.; Mansouri, S.; Kiani, Z.; Rahmani, A. Eur. J. Med. Chem. 2003, 38, 851-854. https://doi.org/10.1016/S0223-5234(03)00148-X
  17. Xiang, M.; Weicheng, Z.; Reto, B. Bioorganic & Medicinal Chemistry Letters 2009, 19(3), 986-989. https://doi.org/10.1016/j.bmcl.2008.11.078
  18. Foroumadi, A.; Emami, S.; Mansouri, S.; Javidnia, A.; Adeli, N. S.; Shirazi, F. H.; Shafiee, A. European Journal of Medicinal Chemistry 2007, 42(7), 985-992. https://doi.org/10.1016/j.ejmech.2006.12.034
  19. Anacona, J. R.; Toledo, C. Transition Metal Chemistry 2001, 26(1), 228-231. https://doi.org/10.1023/A:1007154817081
  20. Bauer, A. W.; Kirby, W. M. M.; Sherris, J. C.; Truck, M. Am. J. Clin. Pathol. 1966, 45, 493-496.
  21. Helfand, S. L.; Werkmeister, J.; Roder, J. C. J. Exp. Med. 1982, 156(2), 492-505. https://doi.org/10.1084/jem.156.2.492
  22. Souza, M. V. N. D. Mini-Rev. Med. Chem. 2005, 5, 1009 https://doi.org/10.2174/138955705774575246
  23. Anderson, V. E.; Osheroff, N. Current Pharmaceutical Design 2001, 7, 339-355.
  24. Champoux, J. J. Ann. Rev. Biochem. 2001, 70, 369-413. https://doi.org/10.1146/annurev.biochem.70.1.369
  25. Dalhoff, A. Infection 2005, 33, 55-70 https://doi.org/10.1007/s15010-005-8209-8
  26. Dalhoff, A.; Shalit, I. The Lancet Infectious Diseases 2003, 3(6), 359-371 https://doi.org/10.1016/S1473-3099(03)00658-3
  27. Osar, Z.; Samanci, T.; Demirel, G. Y.; Damci, T.; Ilkova, H. Experimental Diab. Res. 2004, 5, 155-162. https://doi.org/10.1080/15438600490424244

Cited by

  1. Novel derivatives of 5-amino-1-cyclopropyl-7-[(3R,5S)3,5-dimethylpiperazine-1-yl]-6,8-difluoro-4-oxo-quinoline-3-carboxylic acid: their synthesis, antimicrobial, antifungal, and urease inhibitory studies vol.23, pp.3, 2014, https://doi.org/10.1007/s00044-013-0699-9
  2. CoMFA and CoMSIA studies on a series of fluroquinolone derivatives for potential anti-inflammatory activity vol.6, pp.17, 2014, https://doi.org/10.1039/C4AY01081G
  3. -Aryl-2,5-dioxopyrrolidin-3-yl)-Substituted 1,4-Benzoxazine Derivatives vol.2017, pp.21, 2017, https://doi.org/10.1002/ejoc.201700407
  4. Synthetic strategies toward the synthesis of enoxacin-, levofloxacin-, and gatifloxacin-based compounds: A review vol.47, pp.11, 2017, https://doi.org/10.1080/00397911.2017.1300921
  5. ChemInform Abstract: Synthesis, Characterization and Biological Evaluation of a Series of Levofloxacin Carboxamide Analogues. vol.41, pp.12, 2010, https://doi.org/10.1002/chin.201012190
  6. Novel lipophilic 7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid derivatives as potential antitumor agents: Improved synthesis and in vitro evaluation vol.18, pp.24, 2009, https://doi.org/10.1016/j.bmc.2010.10.039
  7. Synthesis, Characterization and Biological Evaluations of Ciprofloxacin Carboxamide Analogues vol.32, pp.2, 2009, https://doi.org/10.5012/bkcs.2011.32.2.483