References
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed M. A. Chem. Rev. 2005, 105, 1025-1102 https://doi.org/10.1021/cr030063a
- Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547-1562 https://doi.org/10.1021/cr030067f
- Ozin, G. A.; Arsenult, A. C. Nanochemistry: A Chemical Approach to Nanomaterials RSC Publishing: Cambridge, 2005
- Cheon, J.; Lee, J.-H. Acc. Chem. Res. 2008, 41, 1630-1640 https://doi.org/10.1021/ar800045c
- Dhar, S.; Reddy, E.; Shiras, A.; Pokharkar, V.; Prasad, B. Chem. Eur. J. 2008, 14, 10244-10250 https://doi.org/10.1002/chem.200801093
- Liu, H.; Chen, D.; Tang, F.; Du, G.; Li, L.; Meng, X.; Liang, W.; Zhang, Y.; Teng, X.; Li, Y. Nanotechnology 2008, 19, 455101 https://doi.org/10.1088/0957-4484/19/45/455101
- Hauck, T. S.; Jennings, T. L.; Yatsenko, T.; Kumaradsa, J. C.; Chan, W. C. W. Adv. Mater. 2008, 20, 3832-3838 https://doi.org/10.1002/adma.200800921
- Porter, L. A.; Choi, H. C.; Buriak, J. M. Nano Lett. 2002, 2, 1067-1071 https://doi.org/10.1021/nl025677u
- Porter, L. A.; Ribbe, A. E.; Buriak, J. M. Nano Lett. 2003, 3, 1043-1047 https://doi.org/10.1021/nl034328c
- Aizawa, M.; Cooper, A.; Malac, M.; Buriak, J. M. Nano Lett. 2005, 5, 815-819 https://doi.org/10.1021/nl048008k
- Aizawa, M.; Buriak, J. M. J. Am. Chem. Soc. 2005, 127, 8932- 8933 https://doi.org/10.1021/ja052281m
- Hormozi Nezhad, M. R.; Aizawa, M.; Porter, L. A.; Ribbe, A. E.; Buriak, J. M. Small 2005, 1, 1076-1081 https://doi.org/10.1002/smll.200500121
- Sayed, S. Y.; Daly, B.; Buriak, J. M. J. Phys. Chem. C 2008, 112, 12291-12298 https://doi.org/10.1021/jp803887g
- Toshima, N.; Yonezawa, T. New J. Chem. 1998, 22, 1179-1201 https://doi.org/10.1039/a805753b
- Edwards, J. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2008, 47, 9192-9198 https://doi.org/10.1002/anie.200802818
- Venezia, A. M.; La Parola, V.; Deganello, G.; Pawelec, B.; Fierro, J. L. G. J. Catal. 2003, 215, 317-325 https://doi.org/10.1016/S0021-9517(03)00005-8
- Pawelec, B.; Cano-Serrano, E.; Campos-Martin, J. M.; Navaro, R. M.; Thomas, S.; Fierro, J. L. G. Appl. Catal. A 2004, 275, 127-139 https://doi.org/10.1016/j.apcata.2004.07.028
- Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Science 2006, 311, 362-365 https://doi.org/10.1126/science.1120560
- 1.0 mL of aqueous solutions of 1.0 mM HAuCl4 and 1.0 mM Na2PdCl4, were prepared. A piece of Ge wafer was immersed into the aqueous solution of 1.0 mM HAuCl4. After 15 min, the germanium wafer was rinsed with deionized water, and immersed again into the aqueous solution of 1.0 mM Na2PdCl4 for another 15 min (Au/Pd). The resulting Ge substrate was thoroughly rinsed with deionized water to remove unreacted precursors, and then dried under ambient conditions. The opposite sequential reaction was applied to prepare Pd/Au sample
- Kim, H. W.; Shim, S. H.; Lee, J. W. Appl. Sur. Sci. 2007, 243, 7207-7210 https://doi.org/10.1016/j.apsusc.2007.02.192
- Damle, C.; Kumar, A.; Sastry, M. J. Phys. Chem. B 2002, 106, 297-302 https://doi.org/10.1021/jp013468c
- Kim, N. H.; Kim, K. J. Phys. Chem. B 2006, 110, 1837-1842 https://doi.org/10.1021/jp055541v
- Swanson, S. A.; McClain, R.; Lovejoy, K. S.; Alamdari, N. B.; Hamilton, J. S.; Scott, J. C. Langmuir 2005, 21, 5034-5039 https://doi.org/10.1021/la047284b
- Han, H. S.; Han, S. W.; Joo, S. W.; Kim, K. Langmuir 1999, 15, 6868-6874 https://doi.org/10.1021/la990396w
- Garrell, R. L. Anal. Chem. 1989, 61, 401A-411A https://doi.org/10.1021/ac00181a001
- Lee, Y. W.; Kim, N. H.; Lee, K. Y.; Kwon, K.; Kim, M.; Han, S. W. J. Phys. Chem. C 2008, 112, 6717-6722 https://doi.org/10.1021/jp710933d
- Chang, B.-Y.; Park, S. M. J. Electrochem. Soc. 2004, 151, C786-C788 https://doi.org/10.1149/1.1814032
- Hovestad, A.; Janssen, L. J. J. J. App. Electrochem. 1995, 25, 519-527 https://doi.org/10.1007/BF00573209
- Chi, Q. J.; Dong, S. J. Anal. Chim. Acta 1995, 310, 429-436 https://doi.org/10.1016/0003-2670(95)00152-P
- Zech, N.; Podlaha, E. J.; Landolt, D. J. Electrochem. Soc. 1999, 146, 2886-2891 https://doi.org/10.1149/1.1392024
- CRC Handbook of Chemistry and Physics, 84th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2004
- Nutt, M. O.; Heck, K. N.; Alvarez, P.; Wong, M. S. Applied Catalysis B: Environmental 2006, 69, 115-125 https://doi.org/10.1016/j.apcatb.2006.06.005
- Miranda, F. J. F.; Barcia, O. E.; Mattos, O. R.; Wiart, R. J. Electrochem. Soc. 1997, 144, 3441-3449 https://doi.org/10.1149/1.1838030
- Nichol, M. J.; Philip, H. I. J. Electroanal. Chem. 1976, 70, 233-237 https://doi.org/10.1016/S0022-0728(76)80109-X
- Chassaing, E.; Wiart, R. Electrochim. Acta 1992, 37, 545-553 https://doi.org/10.1016/0013-4686(92)87047-4
Cited by
- Cu2O-templated strategy for synthesis of definable hollow architectures vol.50, pp.56, 2014, https://doi.org/10.1039/c4cc00304g
- Galvanic Deposition of Gold and Palladium on Magnesium by the Method of Substitution vol.51, pp.3, 2015, https://doi.org/10.1007/s11003-015-9857-1
- O-based heterogeneous nanostructures vol.7, pp.25, 2015, https://doi.org/10.1039/C5NR02178B
- Solution and Their Inverse Photoresponse vol.38, pp.12, 2017, https://doi.org/10.1002/bkcs.11306
- Epitaxial Growth of Nanostructured Gold Films on Germanium via Galvanic Displacement vol.2, pp.12, 2009, https://doi.org/10.1021/am100698w
- Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications vol.96, pp.None, 2009, https://doi.org/10.1016/j.pmatsci.2018.03.006