References
- Zhang, Y.; Luo, S.; Tang, Y.; Yi, L.; Hou, K. Y.; Cheng, J. P.;Zeng, X.; Wang, P. G. Anal. Chem. 2006, 78, 2001. https://doi.org/10.1021/ac051919+
- Sun, X. L.; Stabler, C. L.; Cazalis, C. S.; Chaikof, E. L.Bioconjugate Chem. 2006, 17, 52. https://doi.org/10.1021/bc0502311
- Lee, J. K.; Chi, Y. S.; Choi, I. S. Langmuir 2004, 20, 3844. https://doi.org/10.1021/la049748b
- Nandivada, H.; Chen, H.-Y.; Bondarenko, L.; Lehann, J. Angew. Chem. 2006, 45, 3360. https://doi.org/10.1002/anie.200600357
- Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004 https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
- Zhao, Y. B.; Yan, Z. Y.; Liang, Y. M. Tetrahedron Lett. 2006, 47, 1545. https://doi.org/10.1016/j.tetlet.2006.01.004
- Murcia, M. J.; Naumann, C. A. Biofunctionalization of Fluorescent Nanoparticles in Biofunctionalization of Nanomaterials;Kumar, C., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA:Weinheim, Germany, 2005; Chap 1, p 1.
- Meziani, M. J.; Lin, Y.; Sun, Y. P. Conjugation of Nanomaterials with Proteins in Biofunctionalization of Nanomaterials; Kumar, C., Ed.; WILEYVCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005;Chap 7, p 183.
- He, P.; Dai, L. Carbon Nanotube Biosensors in Biological and Biomedical Nanotechnology; Lee, A. P.; Lee, L. J.; Ferrari, M.,Eds.; Springer cience+Business Media, LCC: New York, 2006;Chap 6, p 171.
- Soellner, M. B.; Dickson, B. L.; Nilsson, R. T. J. Am. Chem. Soc. 2003, 125, 11790. https://doi.org/10.1021/ja036712h
- Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289. https://doi.org/10.1126/science.1062711
- Moncada, S.; Palmer, R. M. J.; Higgs, E. A. Pharmacol. Rev. 1991, 43, 109
- Palmer, R. M. J.; Ferrige, A. G.; Moncada, S. Nature 1987, 327, 524 https://doi.org/10.1038/327524a0
- Furchagott, R. F.; Zawadzki, J. V. Nature 1980, 288, 373. https://doi.org/10.1038/288373a0
- Sexton, D. J.; Muruganandam, A.; Mckenney, D. J.; Mutus, B. Photochem. Photobiol. 1994, 59, 463 https://doi.org/10.1111/j.1751-1097.1994.tb05065.x
- Nathan, C. F.; Hibbs Jr., J. B. Curr. Opin. Immunol. 1991, 3, 65 https://doi.org/10.1016/0952-7915(91)90079-G
- Marletta, M. A.;Yoon, P. S.; Lyengar, R.; Leaf, C. D.; Wishnok, J. S.Biochemistry 1988, 27, 8706. https://doi.org/10.1021/bi00424a003
- Hibbs Jr., J. B.; Vavrin, Z.; Taintor, R. R. J. Immunol. 1987, 138, 550.
- Montague, P. R.; Gancayco, C. D.; Winn, M. J.; Marchase, R. B.; Friedlander, M. J. Science 1994, 263, 973. https://doi.org/10.1126/science.7508638
- Snyder, S. H. Science 1992, 257, 494. https://doi.org/10.1126/science.1353273
- Curran, D. P.; Fenk, C. J. Am. Chem. Soc. 1985, 107, 6023. https://doi.org/10.1021/ja00307a031
- Mitchell, W. R.; Paton, R. M. Tetrahedron Lett. 1979, 2443.
- Hwang, K.-J.; Kim, S. K.; Shim, S. C. Chem. Lett. 1998, 8, 859. https://doi.org/10.1016/S0960-894X(98)00123-1
- Hwang, K.-J.; Jo, I.; Shin, Y. A.; Yoo, S.; Lee, J. H. Tetrahedron Lett. 1995, 36, 3337. https://doi.org/10.1016/0040-4039(95)00535-K
- Kim, C. O.; Jung, J. W.; Kim, M.; Kang, T. H.; Ihm, K.; Kim, K. J.; Kim, B.; Park, J. W.; Nam, H. W.; Hwang, K.-J. Langmuir 2003, 19, 4504. https://doi.org/10.1021/la026816q
- Jung, Y. J.; La, Y. H.; Kim, H. J.; Kang, T. H.; Ihm, K.; Kim, K. J.; Kim, B. S.; Park, J. W. Langmuir 2003, 19, 4512. https://doi.org/10.1021/la027059z
- La, Y. H.; Kim, H. J.; Maeng, I. S.; Jung, Y. J.; Park, J. W.; Kang, T. H.;Kim, K. J.; Ihm, K.; Kim, B. Langmuir 2002, 18, 301. https://doi.org/10.1021/la011360i
- Kim, G. Y. Synthesis of Furoxan Derivatives for Cleavage Reaction on Solid Surface, MS thesis; Hongik University:December, 2005.
- Heo, J.-M.; Kim, G. Y.; Hwang, K.-J. J. Korean Chem. Soc. 2007, 51, 160. https://doi.org/10.5012/jkcs.2007.51.2.160
- Calvino, R.; Gasco, A.; Menziani, E.; Serafino, A. J. Heterocyclic Chem. 1983, 20, 783 https://doi.org/10.1002/jhet.5570200355
- Fruttero, R.; Ferrarotti, B.; Serafino, A.; Stilo, A. D.; Gasco, A. J. Heterocyclic Chem. 1989, 26, 1345. https://doi.org/10.1002/jhet.5570260523
- Hwang, K.-J.; Park, Y. C.; Kim, H. J.; Lee, J. H. Biosci. Biotechnol. Biochem. 1998, 62, 1693 https://doi.org/10.1271/bbb.62.1693
- Hwang, K.-J.; Kang, H. Bull. Kor. Chem. Soc. 1998, 19, 506.
- Das, O.; Paria, S.; Paine, T. K. Tetrahedron Lett. 2008, 49, 5924. https://doi.org/10.1016/j.tetlet.2008.07.148
- Velazquez, C.; Rao, P. N. P.; McDonald, R.; Knaus, E. E. Bioorg. Med. Chem. 2005, 13, 2749. https://doi.org/10.1016/j.bmc.2005.02.034
- Mundy, B. P.; Ellerd, M. G. Name Reactions and Reagents in Organic Synthesis; Wiley: New York, 1988; pp 214-215.
- Witiak, D. T.; Williams, D. R.; Kakodkar, S. V.; Hite, G.; Shen, M.-S. J. Org. Chem. 1974, 39, 1242. https://doi.org/10.1021/jo00923a018
- Dambacher, J.; Zhao, W.; El-Batta, A.; Anness, R.; Jiang, C.;Bergdahl, M. Tetrahedron Lett. 2005, 46, 4473. https://doi.org/10.1016/j.tetlet.2005.04.105
Cited by
- Novel Nitric Oxide-Releasing Derivatives of Brusatol as Anti-Inflammatory Agents: Design, Synthesis, Biological Evaluation, and Nitric Oxide Release Studies vol.57, pp.18, 2014, https://doi.org/10.1021/jm5007534
- New thermally stable energetic materials: synthesis and characterization of guanylhydrazone substituted furoxan energetic derivatives vol.39, pp.1, 2015, https://doi.org/10.1039/C4NJ01175A
- Synthesis, characterization, and biological evaluation of furoxan coupled ibuprofen derivatives as anti-inflammatory agents vol.147, pp.3, 2016, https://doi.org/10.1007/s00706-015-1557-x
- Study on the Photoinduced Nitric-Oxide-Releasing Ability of 4-Alkoxy Furoxans vol.6, pp.5, 2017, https://doi.org/10.1002/ajoc.201700030
- Novel Energetic Compounds Based on 3-Methyl-1,2,5-Oxadiazole 2-Oxide pp.1545-8822, 2018, https://doi.org/10.1080/07370652.2017.1302519
- Extreme Ultraviolet-Induced Surface Modification of Self-Assembled Monolayers of Furoxans vol.113, pp.36, 2009, https://doi.org/10.1021/jp903599f
- Synthesis and E-Beam-Mediated Gas Phase Fragmentation of Thiol-Containing Furoxans for Nanopatterned Alkyne Formation on Gold Surface vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3583
- Synthesis and Characterization of Bisnitrofurazanofuroxan vol.31, pp.5, 2009, https://doi.org/10.5012/bkcs.2010.31.5.1400
- E-beam Mediated Ligand Dissociation of Alkyne-Dicobaltcarbonyl Complexes as Potential Photochemical Alkyne Precursor vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.689
- New Energetic Derivatives of 1-Amino-3-Nitroguanidine vol.33, pp.3, 2015, https://doi.org/10.1080/07370652.2014.956191
- A Novel Parkinson’s Disease Drug Candidate with Potent Anti-neuroinflammatory Effects through the Src Signaling Pathway vol.59, pp.19, 2016, https://doi.org/10.1021/acs.jmedchem.6b00976
- Combining the furoxanylhydrazone framework with various energetic functionalities to prepare new insensitive energetic materials with 3D-cube layer stacking vol.44, pp.15, 2009, https://doi.org/10.1039/d0nj00541j