DOI QR코드

DOI QR Code

Electrochemistry of Hemoglobin in the Chitosan and TiO2 Nanoparticles Composite Film Modified Carbon Ionic Liquid Electrode and Its Electrocatalysis

  • Sun, Wei (Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Li, Xiaoqing (Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Liu, Shufeng (Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Jiao, Kui (Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology)
  • Published : 2009.03.20

Abstract

Direct electron transfer of hemoglobin (Hb) in the chitosan (CTS) and $TiO_2$ nanoparticles (nano-$TiO_2$) composite films was achieved by using a room temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate ($BMIMPF_6$) modified carbon paste electrode (CILE) as the basal electrode. UV-Vis and FT-IR spectroscopy indicated that Hb in the film retained the native structure. Electrochemical investigation indicated that a pair of well-defined quasi-reversible redox peaks of Hb heme Fe(III)/Fe(II) was obtained with the formal potential located at -0.340 V (νs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n) and the standard electron transfer rate constant ($k_s$) were got as 0.422, 0.93 and 0.117 $s^{-1}$, respectively. The fabricated CTS/nano-$TiO_2$/Hb/CILE showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) and hydrogen peroxide ($H_2O_2$), which exhibited a potential application in fabricating a new kind of third generation biosensor.

Keywords

References

  1. Buzzo, M. C.; Hardace, C.; Compton, R. G. Anal. Chem. 2004, 76, 4583 https://doi.org/10.1021/ac040042w
  2. Li, Z.; Liu, H.; Liu, Y.; He, P.; Li, H.; Li, J. H. Langmuir 2004, 20, 10260 https://doi.org/10.1021/la048480l
  3. He, P.; Liu, H.; Li, Z.; Li, J. H. J. Electrochem. Soc. 2005, 152, E146 https://doi.org/10.1149/1.1870754
  4. Sun, W.; Wang, D. D.; Gao, R. F.; Jiao, K. Electrochem. Commun. 2007, 9, 1159 https://doi.org/10.1016/j.elecom.2007.01.003
  5. Maleki, N.; Safavi, A.; Tajabadi, F. Anal. Chem. 2006, 78, 3820 https://doi.org/10.1021/ac060070+
  6. Wang, S. F.; Chen, T.; Zhang, Z. L.; Shen, X. S.; Lu, Z. X.; Pang, D. W.; Wong, K. Y. Langmuir 2005, 21, 926
  7. Zein, S.; Abedin, E.; Borissenko, N.; Endres, F. Electrochem. Commun. 2004, 6, 422 https://doi.org/10.1016/j.elecom.2004.02.013
  8. Yu, P.; Lin, Y. Q.; Xiang, L.; Lei, S.; Zhang, J.; Mao, L. Q. Langmuir 2005, 21, 9000 https://doi.org/10.1021/la051089v
  9. Huang, H.; Hu, N. F.; Zeng, Y. H.; Zhou, G. Anal. Biochem. 2002, 308, 141 https://doi.org/10.1016/S0003-2697(02)00242-7
  10. Bindhu, L. V.; Abraham, E. T. J. Appl. Polym. Sci. 2003, 88, 1456 https://doi.org/10.1002/app.11815
  11. Yang, M. H.; Yang, Y. H.; Liu, B.; Shen, G. L.; Yu, R. Q. Sens. Actuators B 2004, 101, 269 https://doi.org/10.1016/j.snb.2004.01.003
  12. Peniche, C.; Arguelles-Monal, W.; Peniche, H. Macromol. Biosci. 2003, 3, 511 https://doi.org/10.1002/mabi.200300019
  13. Zhang, Y.; He, P.; Hu, N. F. Electrochim. Acta 2004, 49, 1981 https://doi.org/10.1016/j.electacta.2003.12.028
  14. Li, Q.; Luo, G.; Feng, J. Electroanalysis 2001, 13, 359 https://doi.org/10.1002/1521-4109(200104)13:5<359::AID-ELAN359>3.0.CO;2-J
  15. Zhou, H.; Gan, X.; Wang, J.; Zhu, X. L.; Li, G. X. Anal. Chem. 2005, 77, 6102 https://doi.org/10.1021/ac050924a
  16. Rusling, J. F.; Nassar, A. E. F. J. Am. Chem. Soc. 1993, 115, 11891 https://doi.org/10.1021/ja00078a030
  17. Rusling, J. F.; Kumonsinski, T. F. Intell. Instrum. Comput. 1992, 10, 139
  18. Maleki, N.; Safavi, A.; Sedaghati, F.; Tajabadi, F. Anal. Biochem. 2007, 369, 149 https://doi.org/10.1016/j.ab.2007.04.024
  19. Musameh, M.; Wang, J. Anal. Chim. Acta 2008, 606, 45 https://doi.org/10.1016/j.aca.2007.11.012
  20. Safavi, A.; Maleki, N.; Moradlou, O.; Sorouri, M. Electrochem. Commun. 2008, 10, 420 https://doi.org/10.1016/j.elecom.2007.12.026
  21. Nassar, A. E. F.; Rusling, J. F. J. Am. Chem. Soc. 1996, 118, 3043 https://doi.org/10.1021/ja960065v
  22. Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Wiley: New York, 1980
  23. Lu, X. B.; Hu, J. Q.; Yao, X. Biomacromolecules 2006, 7, 975 https://doi.org/10.1021/bm050933t
  24. Laviron, E. J. Electroanal. Chem. 1979, 101, 19 https://doi.org/10.1016/S0022-0728(79)80075-3
  25. Laviron, E. J. Electroanal. Chem. 1974, 52, 355 https://doi.org/10.1016/S0022-0728(74)80448-1
  26. Zhao, Y. D.; Bi, Y. H.; Zhang, W. D.; Luo, Q. M. Talanta 2005, 65, 489 https://doi.org/10.1016/j.talanta.2004.06.028
  27. Kamin, R. A.; Wilson, G. S. Anal. Chem. 1980, 52, 1198 https://doi.org/10.1021/ac50058a010
  28. He, P. L.; Hu, N. F. Electroanalysis 2004, 16, 13
  29. Wang, H. Y.; Guan, R.; Fan, C. H.; Zhu, D. X.; Li, G. X. Sensor Actuators B 2002, 84, 214 https://doi.org/10.1016/S0925-4005(02)00027-8
  30. Li, J.; Tan, S. N.; Ge, H. Anal. Chim. Acta 1996, 335, 137 https://doi.org/10.1016/S0003-2670(96)00337-6

Cited by

  1. Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide vol.17, pp.3, 2013, https://doi.org/10.1007/s10008-012-1939-5
  2. Application of Titanium Dioxide Nanowires for the Direct Electrochemistry of Hemoglobin and Electrocatalysis vol.62, pp.6, 2015, https://doi.org/10.1002/jccs.201400373
  3. Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode vol.31, pp.11, 2009, https://doi.org/10.5012/bkcs.2010.31.11.3259
  4. A review on electrodes modified with ionic liquids vol.656, pp.1, 2011, https://doi.org/10.1016/j.jelechem.2011.01.008