Infra-Red Study of Surface Carbonation on Polycrystalline Magnesium Hydroxide

Heekyoung Kwon and Dong Gon Park*
Department of Chemistry, Sookmyng Women's Lnwersity, Seoul 140-742, Korea. 'E-mail: dgparkasm.ackr Received July 27, 2009. Accepted September 9, 2009

Abstract

Carbonation of $\mathrm{Mg}(\mathrm{OH})_{2}$ at $300^{\circ} \mathrm{C}$ was studied by Infrared spectroscopy. Delyydroxylation and carbonation reactions were carried out in consecutive manner via 2 -step procedure. Unidentate carbonates were produced only on defective surface of MgO in situ generated by dehydroxylation of $\mathrm{Mg}(\mathrm{OH})_{2}$ under dynanic vacuum. Bicarbonates and bidentate carbonates were not observed. Generation of unidentate carbonates was accompanied by decrease of 1 -coordinated hydroxides and concomitant increase of muti-coordinated hydroxides on the surface. Postulated reaction mechanism for the carbonation of $\mathrm{Mg}(\mathrm{OH})_{2}$ at $300^{\circ} \mathrm{C}$ was proposed.

Key Words: Carbonation, Dehydroxylation. Carbonates. Hydroxides

Introduction

Much effort is being made to devise effective ways to remove atmospheric CO_{2}. and to store it for extended time. ${ }^{1}$ Several approaches for the CO_{2}-sequestration include transformation of CO_{2} into carbonate minerals. ${ }^{*}$ The most viable candidates for the carbonate mineralization are oxides or hydroxides of Mg or Ca . They generate stable carbonates which are insoluble in water. A major obstacle in applying them for $\mathrm{CO}_{-}-$ sequestration is that the rate of carbonation is very low. Challenge is to find a practical way to enhance the carbonation process. For the purpose, it is required to expand understanding on the carbonation process of these materials.

Studies on $\mathrm{Mg}(\mathrm{OH})_{2}$, show that the carbonation process is quite complex. that exact mechanism cannot easily be clarified ${ }^{3,4}$ Carbonation was carried out at the temperature higher than $300^{\circ} \mathrm{C}$. where reasonable conversion to MgCO_{3} could be reached. Apparently, many different reactions were concurrently involved with the generation of MgCO_{3} at the temperature range. Not only carbonation. but delyydroxylation of Mg (OH) into MgO proceeded simultaneously. As reaction temperature was raised above $400^{\circ} \mathrm{C}$. decarbonation also started to occur. competing with the simultaneous delydroxylation and carbonation. Generation of MgCO_{3} layer also retarded further carbonation by pacify ing surface of the solid sample. Further complicating the studies on the kinetics and mechanisms. dehydroxylation accompanied morphological reconstruction as well as in situ generation of MgO phase. ${ }^{5 \cdot 7}$ Therefore. fundamental understanding of the oxide surfaces is also necessary to fully describe carbonation of $\mathrm{Mg}(\mathrm{OH})$.. Surfaces of metal oxides play an important role in various solid-gas reactions occurring in nature or in industrial processes. such as catalysis. corrosion and many geological processes. ${ }^{8}$

In this report conversion of $\mathrm{Mg}(\mathrm{OH})_{2}$ into MgCO_{3} was carried out via 2-step reactions at low temperature of $300^{\circ} \mathrm{C}$. and reactions occurring on the solid surface were investigated by Fourier transformed infrared (FTIR) spectroscopy:

Experimentals

$\mathrm{Mg}(\mathrm{OH})_{2}$ was prepared by hydration of commercial MgO ($99 \% .325$ mesh) purchased from Sigma-Aldrich. In I-L round bottom flask equipped with a water condenser. 20 g of MgO was dispersed in 500 mL distilled water. The mixture was refluxed for 24 h . The white paste obtained by filtration was dried in oven at $120^{\circ} \mathrm{C}$ overnight. Fine white powder of Mg $(\mathrm{OH})_{2}$ was obtained after brief grinding by agate mortar and pestle.

Pre-treatment and carbonation reaction were carried out in 100 mL Schlenk reaction vessel (SRV) attached to double manifold inert-atmosphere system. The manifold for inert gas was modified so that $\mathrm{Ar} . \mathrm{CO}_{2}$. or dynamic vacuum could be switched at will. without any interruption during heat treatment. In the 100 mL SRV. 3.0 g of $\mathrm{Mg}(\mathrm{OH})_{2}$ powder was loaded. then was heated at $300{ }^{\circ} \mathrm{C}$ (or $500^{\circ} \mathrm{C}$) by using the home-made heater. The flow rate of the gas was $33 \mathrm{~mL} / \mathrm{min}$.

FTIR spectrum was taken by JASCO 670 FTIR spectrometer from powder sample pelletized with KBr . Powder sample in SRV was taken out and made into pellet under Ar atmosphere in VAC glove box. The KBr pellet was made by using small bolt-type pellet presser purchased from SigmaAldrich. and kept as standing in the bolt under dry Ar all the time, thereby eliminating contact with atmospheric CO_{2} or moisture. Powder X-ray diffraction pattern was taken with AXS-D8 ADVANCE diffractometer from Bruker. By using modified sample holder covered by Mylar film. contact with atmospheric CO_{2} or moisture was eliminated. BET surface area was measured by GEMINI V from Micromeritics.

Results and Discussion

Mg and Ca are abundant elements on earth. and their oxides and hydroxides are relatively cheap and readily available. The capture of CO_{2} by these oxides or hydroxides may occur by one of following reactions.

$$
\begin{align*}
& \mathrm{MgO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCO}_{3}(\mathrm{~s}) \tag{1}\\
& \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s}) \tag{2}\\
& \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \tag{3}\\
& \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \tag{4}
\end{align*}
$$

Carbonation in practice is carried out in dynamic flow of reactant gases, which is non-equilibrium condition. In such dy namic sy stem. the partial pressure of gas product never reaches standard state of 1 atm. Therefore. thermody namic parameters in the Table 1 do not exactly reflect the real conditions. Still. thermodynamic parameters tabulated for the standard state in equilibrium may provide instnictive insight on the consequences from raising temperature in the real situation.

A brief calculation of a few basic thermodynamic parameters (provided in Table 1) suggests that Ca minerals may be better candidates for locking off CO_{2} into carbonate minerals than Mg . Carbonation of Ca minerals is strongly inclined toward fonvard reaction (large negative values of $\Delta \mathrm{G}^{\circ}$ reaction). Historical human experience already demonstrated this aspect. by Romans heavily using slaked lime $\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$ as mortar in construction. Buildings and aqueducts whose bricks were glued together with CaCO_{3}. in situ generated from the $\mathrm{Ca}(\mathrm{OH})_{2}$ used. are still standing after several hundred years. But, for some technical purposes. one might need to reverse the carbonation reaction at will. to release CO_{2} at some point. thereby refreshing sequestrating reagents for recycle. For such specific purpose. Mg minerals could be better candidates than Ca .
In any case. rate for carbonation at ambient temperature is too slow to be practical. From previous studies by others, it was demonstrated that the temperature had to be raised, in order to accomplish carbonation in practical rate, by providing activation energy to overcome kinetic barrier. ${ }^{3.4}$ But. the kinetic enhancement starts to come into conflict with thermodynamics in the carbonation of these minerals. Even though all four reactions above are spontaneous at room temperature (minus value of $\Delta \mathrm{G}_{\text {teation in }}^{\circ}$ Table 1). calculation on reversal temperature in Table 1 suggests the carbonation should become unfavorable as temperature goes up. The extent of offset paid by enhancing the reaction rate by raising temperature would be especially problematic for MgO being the one most signi-

Table 1. Standard molar free energy of reaction ($\Delta \mathrm{G}^{\prime \prime}$ reacion) calculated from tabulated values of standard molar enthalpy of fomation (Δ $\mathrm{H}^{\circ} \mathrm{f}$) and standard molar entropy (S°). Equilibriunn was assumed where the pressures of all the gases are 1 atm (standard state). Calculation was made to get a rough idea on the consequences of raising reaction temperature.

Reaction No. $\Delta \mathrm{G}_{\text {reaction }}^{\text {(}}(\mathrm{KI} / \mathrm{mol})$ at $25^{\circ} \mathrm{C}$	T for $\Delta \mathrm{G}_{\text {reacimn }}^{\prime}=0\left({ }^{\circ} \mathrm{C}\right)^{*}$	
(1)	-45.2	267
(2)	-134.7	928
(3)	-12.9	598
(4)	-65.7	3961

[^0]Table 2. Descriptions of the 2-step reactions carried out for $\mathrm{Mg}(\mathrm{OH})_{2}$. Surface area was measured by BET method.

Sample	pre-treatment at $300^{\circ} \mathrm{C}$ (1st step)	carbonation at $3000^{\circ} \mathrm{C}^{+}$ (2nd step)	Surface area $\mathrm{m}^{2} / \mathrm{g}$
$\mathrm{Mg}(\mathrm{OH})_{2}$	no	no	28
M300C	no	$6 \mathrm{~h} / 1 \mathrm{~atm} \mathrm{CO}_{2}$	59
M300AC	$19 \mathrm{l} / 1 \mathrm{~atm} \mathrm{Ar}$	$12 \mathrm{~h} / \mathrm{atm} \mathrm{CO}_{2}$	46
M300V	$19 \mathrm{~h} / 10^{-3}$ torr	no	263
M300VC	$19 \mathrm{~h} / 10^{3}$ tor	$6 \mathrm{~h} / \mathrm{latm} \mathrm{CO}_{2}$	-
M500VC	$\begin{aligned} & 19 \mathrm{~h} / 10^{-3} \text { to } \Pi \\ & \text { at } 500^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 6 \mathrm{~h} / 1 \mathrm{~atm} \mathrm{CO} \\ & 2 \\ & \text { at } 300^{\circ} \mathrm{C} \end{aligned}$	268

*The flow rate of the gas was 33 mL min.
ficantly influenced. Low conversion may be unavoidable in the carbonation of MgO as reaction temperature goes up. This conflicting aspect is apparent in previous studies. Study on $\mathrm{Mg}(\mathrm{OH})=$ by others verified that delydroxylation and carbonation reactions occurred simultaneously. and conversion to MgCO_{3} was about 15% at best. ${ }^{3.4}$ That naximum conversion was only possible between $300-500^{\circ} \mathrm{C}$. where the rate of delyydroxylation of $\mathrm{Mg}(\mathrm{OH})_{2}$ into MgO was substantial. At the temperature range. it was observed that decarbonation (reverse reaction) already started to occur. ${ }^{3}$ It was also suggested that the generation of MgCO_{3} layers on the surface impeded further carbonation. It was not obvious whether the carbonation was occurring on MgO or $\mathrm{Mg}(\mathrm{OH})_{2}$, because the reaction mechanism was not clearly elucidated.

In an effort to make separate observations on dehydronylation and carbonation, which normally proceed simultaneously. carbonation on $\mathrm{Mg}(\mathrm{OH})_{2}$ was carried out wia 2 -step reactions at $300^{\circ} \mathrm{C}$. Conversion to MgCO_{3} was known to be low at the temperature. ${ }^{3}$ The rate of deliydroxylation of $\mathrm{Mg}(\mathrm{OH})=$ is also very low at $300^{\circ} \mathrm{C}$. But. it can be accelerated by lowering the activation energy by carrying out delydroxylation in dynamic vacuum. It is reported that the apparent activation energies for dehydrosylation of $\mathrm{Mg}(\mathrm{OH})$) increase as following order: in vacuum $(53-126 \mathrm{KJ} / \mathrm{mol})^{9}<$ in helium $(146 \mathrm{KJ} / \mathrm{mol})^{2}$ $<\mathrm{in} \mathrm{CO}_{2}(304 \mathrm{KJ} / \mathrm{mol})^{3}$. It is also known that the apparent activation energy of the delydroxylation increases with partial pressure of $\mathrm{H}_{2} \mathrm{O}^{\text {|t }}$ By cutting off the supply of CO_{2} and lowering the activation energy. only dehydroxylation reaction could be carried out in the first step (pre-treatment in Table 2). In second step. pure CO_{2} at 1 atm was flushed over the sample. thereby discouraging delyy droxy lation by raising the activation energy. at the same time encouraging carbonation reaction by supplying reactant. In this consecutive manner. dehydroxylation and carbonation reactions could be carried out separately. Thereby, complication coming from simultaneous reactions could be minimized during observation.

Table 2 provides a list of several different pre-treatments on $\mathrm{Mg}(\mathrm{OH})$) samples. prior to the carbonation in pure CO_{2} atmosphere. Carbonation (2nd step reaction) was carried out immediately after the pre-treatment (lst step reaction), by directly exchanging the gas atmosphere without any' internuption or cooling. For all but one case. both pre-treatment and carbona-

Figure 1. Schematic representations of different contomnations of carbonates on the surface of MgO . (a) unidentate carbonate, (b) bicarbonate, (c) bidentate carbonate, (d) bridging carbonate, and (e) multi-coordinated carbonate ($\mathrm{O}_{3 c}-\mathrm{CO}_{2}$).

Figure 2. Powder X -ray diffraction patterns obtained after carying out the reactions described in Table 2. (a) $\mathrm{Mg}(\mathrm{OH})$ as prepared by hydration of commercially obtained MgO , (b) exposed to CO_{2} at 300 ${ }^{\circ} \mathrm{C}$ without any pre-treatment $\left(\mathrm{M} 300 \mathrm{C}\right.$), (c) exposed to CO_{2} after pre-treatment in Ar , at $300^{\circ} \mathrm{C}$ (M300AC), (d) atter pre-treatment at $300^{\circ} \mathrm{C}$ under dynamic vacumn (M 300 V), (e) exposed to CO_{2} after pre-treatment under dynamic vacuum, at $300^{\circ} \mathrm{C}$ (M300VC). Closed cicles (\bullet) and open triangles (∇) designate diffraction peaks from $\mathrm{Mg}(\mathrm{OH})$ a and MgO , respectively.
tion reaction were carried out at $300^{\circ} \mathrm{C}$. In order to eliminate 1 -coordinated hydroxides on the surface. one specific sample (M500VC) was pre-treated at $500^{\circ} \mathrm{C}$. and cooled down to 300 ${ }^{\circ} \mathrm{C}$ where subsequent carbonation was carried out.

In general. observed features in a solid-gas reaction are strongly related to the characteristics of the solid surface. rather than its bulk. Whereas X-ray diffraction pattern provides features mostly from bulk. FTIR spectnum gives valuable in-

Figure 3. FTIR spectra taken from samples pelletized with KBr , atter carying out the reactions described in Table 2. (a) $\mathrm{Mg}(\mathrm{OH})_{2}$ as prepared, (b) M300C, (c) M300AC, (d) M300V, and (e) M300VC. Open triangles (∇) and closed triangles (\mathbf{V}) designate MgO and MgCO_{3}, respectively.
formation on the surface of solids. As for the surface carbonates. the assignments of the vibrational frequencies are relatively well documented. ${ }^{11-16}$ Graphic representations for different carbonates attainable on the surface of MgO are shown in Figure 1. Four major vibrational frequencies for unidentate carbonates (Figure la) are assigned at 1510-1550. 1390-1410. $1035 \cdot 1050$, and $860-865 \mathrm{~cm}^{-111 \cdot 13}$ Vibrational frequencies for bicarbonates (figure lb) are assigned at 1655-1658. 14051419. and $1220-1223 \mathrm{~cm}^{-1}{ }^{111.13-15}$ Bidentate carbonates (Figure 1c) show peaks at $1665 \cdot 1670,1325 \cdot 1330.1005-1030$, and $850-855 \mathrm{~cm}^{-1} .^{11-13} \mathrm{Key}$ signature of unidentate carbonate, distinguishing it from others, is separation between two major peaks which is $100 \mathrm{~cm}^{-1} .^{11}$ Bridging carbonates (Figure ld) and multi-coordinated carbonates (Figure le) have been seldom observed in any precedent reports on MgO . Only a theoretical calculation was carried out for multi-coordinated carbonate. $\left[\mathrm{O}_{4 c}-\mathrm{CO}_{2}\right]^{2}$. and vibrational frequencies were predicted at $1460,1042,945$, and $794 \mathrm{~cm}^{-1}$.

Powder X-ray diffraction patterns and FTIR spectra obtained from the solid samples listed in Table 2 are shown in Figure 2 and Figure 3. respectively. After heating $\mathrm{Mg}(\mathrm{OH})_{2}$ at $300^{\circ} \mathrm{C}$ in pure CO_{2} atmosphere without any pre-treatment, no apparent change is observed in the powder X-ray diffraction patterns (Figure 2a and 2b). FTIR spectra (Figure 3a and 3b) show several peaks developed after heating. in very weak intensity. at 1655.1450 .1065 .1010 . and $880 \mathrm{~cm}^{-1}$. They were observed regardless of the CO_{2} introduction (see Figure 3d), thereby excluding possibility of being surface carbonates. They became more prominent as heating lasts, and apparently

Figure 4. Sehematic representation of detective surface of Mge () Diagram shows different kinds of surface hedroxides. Ilydrogen bonding interaction between l-coordinated hydroxide (proten acceptor) and muti-coordinated hydrovide (proton donor) is shown in the inset of the diagram.
were not related to major peaks around $3700 \mathrm{~cm}^{-1}$ in relative intensities. ln previous studies on CP-MgO. these peaks were observed from MgO samples oblained by dehydration of $\mathrm{Mg}(\mathrm{OH})_{2}{ }^{-1}$ Therclore. these peaks were tentatively assigned to MgO phase on the surface generated by dehydration. It suggests that some $\mathrm{Mg}(\mathrm{OH})_{2}$ on the surface turned into MgO . but intensity from MgO was very weak. Dehydroxylation reaction was not significant al the temperature. and no carbonation product was observed. Likewise. no apparent change is observable in the powder X-ray diffraction patterns (Figure 2a and 2c) with the pre-treament in Ar atmosphere. Very weak vibrational peaks from MgO can be located in Figure 3c. when the sample was pre-treated in Ar. indicating generation of a small fraction of MgO phase only on the surface. But. still no carbonate is observed. even after 19 h contact with pure CO_{2} at $300^{\circ} \mathrm{C}$. These obser ations suggest that $\mathrm{Mg}(\mathrm{OH})_{2}$ as prepared does not react with CO_{2} (pure/t atm) at $300^{\circ} \mathrm{C}$. csen with a small fraction of MgO layer on the surface. This outcome is consistent to the gravimetric analysis by others on $\mathrm{Mg}(\mathrm{OH})_{2}{ }^{3}$ that exhibited the extents of both dehydroxylation and carbonation reactions were negligible at $300^{\circ} \mathrm{C}$.

MgO phase on the surface (dehy droxylation product). which inherently contains high concentration of defective sites. and is more reactive than MgO as bulk. must be playing an important role in the generation of MgCO_{3}. It has been known that MgO with high concentration of defects on the surface exhibited umusually high reactivity toward many different chemicals. ${ }^{13,1 \times 19}$ Such high surface-reactivity was found in MgO samples obtained by dehydrating $\mathrm{Mg}(\dot{\mathrm{OH}})$ z in non-cquilibrium condition. such as under fast flow of dry gas. or under dy namic vacuum. Figure 2d and figure 3d show power X-ray diffraction pattern and FTIR spectrum of $\mathrm{Mg}(\mathrm{OH})=$ heat treated at $300^{\circ} \mathrm{C}$ under dy namic vacuum for 19 h . respectively. Whereas dehydroxylation did not proceed decp into bulk in Ar or CO_{2} atmosphere. it turned most of $\mathrm{Mg}(\mathrm{OH})_{2}$ into MgO under dynamic

Figure 5. l"TIR spectra taken Irom the samples exposed to CO_{2} at $300^{\circ} \mathrm{C}$ for different duration. CO_{z} gas was introduced immediately atter 19 h pre-reatment under dinmic vacuum. (a) not exposed to CO) only pre-reatinent was carried out, (b) 6 h exposure, (e) 12 h exposure, and (d) 18 h exposure. Pre-rteatment for (a) to (d) was carried out at $300^{\circ} \mathrm{C}$. Spectrom (e) was taken after pre-treatment at 50()$^{\prime C} \mathrm{C}$, not exposed to $\mathrm{C}\left(\mathrm{O}_{2}\right.$. The FITR speetrum in the inset was taken from AP-MgO), obtained by pre-treating $\mathrm{Al}^{2}-\mathrm{Mg}(\mathrm{OH})_{2}$ at $30(0)$ "C. under dynamic vacuum for 19 h . Al'- $\mathrm{Mg}(\mathrm{OH})_{2}$ was synthesizel by sol-gel/hyper critical drẹing.
vacuum. as can be seen in Figure 2d. Broadness of the diffraction peaks from MgO indicates the cry stalline domain is in nano-scale. which is calculated by Scherrer equation to be 9 nm . BET surface area increased more than 5 -fold ($263 \mathrm{~m}^{2} / \mathrm{g}$). compared to $\mathrm{Mg}(\mathrm{OH})$) heat-treated under 1 atm. These characteristic changes allude to the generation of highly reactive defective sites on the sufface of $\mathrm{MgO}{ }^{13.18 .19}$ When CO_{2} was introduced after the pre-treament under dynamic vacuum. generation of surface carbonates was observed. FTIR spectrum in Figure 3e shows vibrational peaks at 1533.1430 . and $862 \mathrm{~cm}^{-1}$. which can be assigned to unidentate carbonates bonded to Mg on the surface. ${ }^{11-15}$ Remaining peak around $1050 \mathrm{~cm}^{-1}$ is obscured bs overlapping MgO peaks. No peak was observed which could be assigned to bicarbonates or bidentate carbonates on the surface. Powder X-ray diffraction pattern in Figure 2e shows no peak related to MgCO_{3}. indicating those unidentate carbonates were generated only on the surface. These observations from the 2 -step reactions show that delydroxylation process play a critical role in the carbonation of $\mathrm{Mg}(\mathrm{OH})$. via providing reactive surfaces of MgO .

There can be many different hydroxyl groups on the surface of MgO . Depending on the coordination environments around Mg . where the hydroxide is bonded to. 1 -coordinated hydrovides (referred as 'type A' by others) ${ }^{211-22}$ can be designated as

Figure 6. F"IIR spectra taken from the samples exposed to CO_{2} at 300 "C' or dillerent duration. CO_{2} gas was introxdued immediately. atter $1^{9} h_{1}$ pre-treatment under dynamic vacumm. (a) not exposed to CO2, only pre-treatment was watried out, (b) 6 hexposure , (心) 12 h exposure, and (d) 18 h exposure. Pre-rreatment for (a) to (d) was carried out at $300^{\prime \prime} \mathrm{C}$. Pre-treatment for (e) was eamied oul at $5000^{\circ} \mathrm{C}$. and subsequently exposed to CO) for 12 h at $300^{\circ} \mathrm{C}$. Open triangles (V) and closed triangles ($\boldsymbol{\nabla}$) designate MgO) and MgCO$)_{3}$, respeetively.
$\mathrm{HO}-\mathrm{Mg}_{3 \mathrm{c}} \mathrm{HO}-\mathrm{Mg}_{\mathrm{k} .}$ or $\mathrm{HO}-\mathrm{Mg}_{i c}$. Depending on the coordination ensironments around lattice O where H is bonded to multicoordinated hydroxides (referred as 'type B' by others) ${ }^{20122}$ can be designated as $\mathrm{HO}_{3 c}$. $\mathrm{HO}_{1 \mathrm{k}}$. or $\mathrm{HO}_{i c}$. As illustrated in Figure 4. $\mathrm{Mg}_{3 \mathrm{c}}$ and O_{sc} correspond to the atoms at the corners along high index plane [(111) for example of MgO lattice. Mg_{c} and O_{tc} are sitting along the edges. $\mathrm{Mg}_{5 \mathrm{c}}$ and $\mathrm{O}_{5 \mathrm{c}}$ are the ones cmbedded on (IOO) planes. In hydrogen bonding interaction among these surface hydroxides. multi-coordinated hy droxides behave as hy drogen donor, whereas 1-coordinated hydroxides act as hydrogen acceptor through oxygen."- This hydrogen bonding interaction is schematically demonstrated in the inset of the Figure 4. Itydrogen bonding interaction with the lattice oxygen is also considered to exist. especially for the sample heat treated at high temperature above $5000^{\circ} \mathrm{C}$ Vibrational peaks from multi-coordinated hydroxides get broad. because of these hydrogen bonding interactions. It was reported that peaks shift to lower frequeney as number of coordination increases. ${ }^{23.24}$ Therefore. 1 -coordinated hydroxides on the surface (proton acceptor) register relatively sharp peaks at high frequency region around $3700 \mathrm{~cm}^{-1}$. whereas multi-coordinated hydroxides (proton donor) on the surface give broad featureless peaks around $3350-3650 \mathrm{~cm}^{-1}$. ${ }^{20.21}$

Extensive studics have been carried out on the assignments of vibrational frequencies for these surface hydroxyl groups by others. ${ }^{\text {2tw }}$. Bonding in MgO is known to be highly cova-
lent. Not only inductive effect of highly electronegative oxygen. but also electron donating effect by lone pairs of oxygen has to be counted together in assessing the relative comparison of electron density for $\mathrm{O}-\mathrm{H}$ bonding. Due to these two conflicting factors. some of these reports contain a few contradictors predictions. especially on the assignments on 'type A' hydroxides. ${ }^{222321.23}$ Results of the ab initio calculation on MgO clusters show the $\mathrm{Mg}-\mathrm{OH}$ bond length of 1 -coordinated hydroxides increases as coordination number of Mg increases. ${ }^{-2}$ The prediction made by the calculation also indicates the vibrational frequency of 1 -coordinated hydroxides shifts to lower frequencs as the coordination number of Mg increases. This prediction suggests the peak for $\mathrm{HO}-\mathrm{Mg}_{\mathrm{sc}}$ will be at lower frequency region compared to $\mathrm{HO}-\mathrm{Mg}_{3 \mathrm{c}}$.

After dehydroxylation under dynamic vacuum at $300^{\circ} \mathrm{C}$. duration of subsequent CO_{2} contact was extended. and FTIR spectra were taken esery 6 h. FTIR spectra in Figure 5 and Figure 6 show the spectral regions for surface hydroxides and for surface carbonates, respectively. The fcatureless broad peaks spanning from 3300 to $3650 \mathrm{~cm}^{-1}$ in Figure 5 are assigned to multi-coordinated hydroxides (type B). The peak at 3697 cm^{-1} is assigned to 1 -coordinated hy droxides (type A) on the surface of MgO . ${ }^{2(4-2 *}$ The peak at $3697 \mathrm{~cm}^{-1}$ was observed at lower frequency in 'type A' region. Therefore. coordination environment around Mg is tentatively assigned to be $\mathrm{HO}-\mathrm{Mg}_{5}$. In order to get an additional plysical evidence on this speculation. comparison was made by preparing AP-MgO via sol-gel/ hyper-critical drying. ${ }^{13,1 \times 15}$ It is known that $\mathrm{AP}-\mathrm{MgO}$ contains large fraction of high index planes. thereby. high concentration of low coordination sites. such as comers ($\mathrm{Mg}_{3 c}$ and $\mathrm{O}_{3 \mathrm{c}}$) and edges ($\mathrm{Mg}_{\mathrm{tc}}$ and $\mathrm{O}_{1 \mathrm{cc}}$). Vibrational spectrum taken from this highly defective $\mathrm{AP}-\mathrm{MgO}$ was provided in the inset as comparison. The peak for the I-coordinated hydroxides was observed at $3735 \mathrm{~cm}^{-1}$. higher frequence than the one observed in the MgO generated by dehydroxylation of $\mathrm{Mg}(\mathrm{OH})$ _. The broad peak for the multi-coordinated hydroxide is also observed as shifted to higher frequency region around $3600 \mathrm{~cm}^{-1}$. Considering AP-MgO contains significantly higher proportion of low coordination sites than other MgO . those peaks observed at higher frequencies are tentatively assigned to $\mathrm{HO}-\mathrm{Mg}_{3 \mathrm{c}}$ and $\mathrm{HO}_{3 \mathrm{c}}$ - These observations corroborate the assignment of HO Mg ic to the peak at $3697 \mathrm{~cm}^{-1}$. also conforming to the ab initio calculation by others.

In Figure 6 . the increase of the peak intensity for the unidentate carbonates at 1533.1430 . and $862 \mathrm{~cm}^{-1}$ is crident with extended duration of CO_{-}exposure. No peak assignable to bicarbonates or bidentate carbonates developed. It is interesting to note that the intensity of the hydroxide peak at $3697 \mathrm{~cm}^{-1}$ in figure 5 decreases concomitantly with the increase of those carbonate peaks (comparing Figure 5 and Figure 6). Apparently. generation of surface carbonates accompanied disappearance of 1 -coordinated hydroxides on the surface. It is obvious that 1 -coordinated hydroxides on the surface of MgO are reactant. rather than being by-stander. Careful observation of Figure 5 also exhibited that a featureless broad peak developed around $3450 \mathrm{~cm}^{-1}$ during initial 6 h period (Figure 5 b). which was followed by another development of a broad peak around 3600 cm^{-1} (Figure 5 c and 5d). The broad featureless peaks around

Scheme L Postulated reaction mechanism of the surface carbonation of $\mathrm{Mg}(\mathrm{OH})=$

3450 and $3600 \mathrm{~cm}^{-1}$ correspond to $\mathrm{HO}_{5 c}$ and $\mathrm{HO}_{3 c}$, respectively. Therefore generation of unidentate carbonate on the surface of MgO accompanied concurrent demise of 1-coordinated hydroxides. and the development of multi-coordinated hydroxides as well.
In order to see whether the involvement of 1-coordinated hydroxides is necessary for the carbonation they were intentionally eliminated by pre-treating $\mathrm{Mg}(\mathrm{OH})$ at $500^{\circ} \mathrm{C}$ (instead of $300^{\circ} \mathrm{C}$) under dynamic vacuum (sample M500VC). FTIR spectrum taken after pre-treatment at $500^{\circ} \mathrm{C}$ (Figure je) shows no prominent peak around $3700 \mathrm{~cm}^{-1}$, suggesting that the 1 coordinated hydroxides were not present on the surface. After the pre-treatment at $500^{\circ} \mathrm{C}$, the sample was exposed to pure CO_{2} at $300^{\circ} \mathrm{C}$ during 12 h and not much carbonation occurred as can be seen in Figure $6 e$.

From these observations. we postulated possible mechanisms of the carbonation reactions at $300^{\circ} \mathrm{C}$. occurring on the reactive MgO surface generated by dehydroxylation of Mg $(\mathrm{OH})_{2}$. and schematically proposed them in Scheme I. After dehydroxylation at $300^{\circ} \mathrm{C}$ under dynamic vacuum, MgO surfaces develop defective sites such as comers and edges. It was reported that the reactivity of defective sites increases as the coordination number decreases. ${ }^{13,18.19}$ Theoretical study by ab initio calculation also showed that CO_{2} preferably chemisorbs on lower coordinated defective sites. ${ }^{16}$ Therefore. CO 2 adsorbs on highly reactive $\mathrm{O}_{3 \mathrm{c}}$ at the apex of the corners (scheme Ia and Ib). Then, $\mathrm{CO}=$ migrates to the adjacent 1 -coordinated hydroxide. generating a protonated intermediate proposed in Scheme Ic. Subsequent deprotonation generates unidentate carbonate (Scheme Id). At the same time, protonation of lattice oxygen generates multi-coordinated lyydroxide on the surface (Scheme Id). In early stage of the carbonation (initial 6 h), deprotonation proceeds along path generating $\mathrm{HO}_{\mathrm{sc}}$. Later. it follows the path generating $\mathrm{HO}_{3 \mathrm{c}}$. The observations made on Figure 5 and Figure 6 conform to this proposed mechanism. As the outcome of these stepwise processes. the FTIR peak for the 1 -coordinated hydroxide would slurink, and at the same time. the peaks for unidentate carbonates and muti-coordinated hydroxides should grow up.

Theoretical calculation on MgO clusters suggested the chemisorption of CO_{2} on defective sites was non-activated process. and generated multi-coordinated carbonates. without migration. ${ }^{\text {It }}$ Because the calculation was carried out on a cluster embedded in a large array of point charges (surrounding). possibility of the CO_{2} migration was not counted in the theoretical study. Apparently, no such multi-coordinated carbonates were observed in our study. and only unidentate carbonate was genemated. Also. it is interesting to note that bicarbonates would be produced if proton migrated to negatively charged end moiety of the carbonate. But. apparently it did not happen and instead. the proton migrated opposite direction toward the surface. to combine with the multi-coordinated lattice oxygen.

Conclusion

By following 2-step procedure at $300{ }^{\circ} \mathrm{C}$. dehydroxylation and carbonation reactions of $\mathrm{Mg}(\mathrm{OH})_{2}$ were carried out in consecutive manner. thereby trying to see the outcome of each reaction separately. It was shown that carbonation did not occur without preceding dehydroxylation of $\mathrm{Mg}(\mathrm{OH})_{2}$ into MgO . The carbonation product was obtained only on defective MgO surface. which was in situ generated by dehydroxylation of $\mathrm{Mg}(\mathrm{OH})_{2}$ under dynamic vacuum. The carbonation product was unidentate carbonates on the surface. and formation of bicarbonates and bidentate carbonates were not observed.

The generation of unidentate carbonates accompanied concurrent demise of 1 -coordinated hydroxides on the surface of the defective MgO. Without I-coordinated hydroxides on the surface. carbonates were not produced at $300^{\circ} \mathrm{C}$. As carbonation reaction proceeded population of multi-coordinated hydroxides also increased.

On the basis of the observations made during 2 -step reactions. postulated reaction mechanism was proposed for the carbonation of $\mathrm{Mg}(\mathrm{OH})$) at $300^{\circ} \mathrm{C}$. The reaction mechanism proposed in this report might not be necessarily valid for the reactions occurring at ligher temperature than $300^{\circ} \mathrm{C}$. Carbonation reactions of $\mathrm{Mg}(\mathrm{OH})_{2}$ by others were carried out typically around $500^{\circ} \mathrm{C}$. At higher temperature. reaction mechanism almost certainly should get much more complex. because all those reactions and changes. such as dehydroxylation, carbonation decarbonation, translamellar cleavage. and thickening of product layer. would progress simultaneously. Still. the observations made in this study give a very important glimpse into such complex process. Apparently, the carbonation reaction was occurring on the surface of in-situ generated defective MgO . mather than through direct reaction with $\mathrm{Mg}(\mathrm{OH})_{2}$. Therefore, the carbonation of $\mathrm{Mg}(\mathrm{OH})_{2}$ does not appear to proceed wia reaction (3) above. Instead, it can be rewritten as followings. MgO^{*} designates highly reactive MgO which contains high concentration of defective sites.

$$
\begin{equation*}
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{MgO}^{*}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{MgO}^{*}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCO}_{3}(\mathrm{~s}) \tag{6}
\end{equation*}
$$

With MgO^{*} involved, thermodynanic parameters for the
above reactions cannot be known accurately without carefully designed experiments. But. it is interesting to note that reaction (6) actually occur at $300^{\circ} \mathrm{C}$. in dy namic condition. Calorimetric study on MgO with high surface area showed that the standard heat of formation for MgO^{*} is substantially higher than bulk $\mathrm{MgO} .^{29}$ The study was carried out only up to 100 $\mathrm{m}^{2} / \mathrm{g} \mathrm{BET}$ surface area. An intriguing curiosity arises on the outcome if the size of the MgO^{*} particles gets very small while raising surface area further in large extent. We are on further pursuing for the answer to this intriguing question.

References

1. Hahnann, M.; Steinberg, M. Greenhouse Gas Carbon Dioride A fitigation, Science and Technologv: Lewis Publications: London, U. K., 1999.
2. Lackner, K. S.: Wendt, C. H.; Butt, D. P.; Joyce, E. L., Tr.; Sharp, D. H. Energy 1995, $20(11), 1153$.
3. Butt, D. P.: Lackner, K. S.: Wendt, C. H.; Conzone, S. D.: Kung, H.: Lu, Y:; Bremser, T. K. J. Aner. Ceram. Soc. 1996, 79(7), 1892.
4. Béarat, H.: McKelvy, M. J.; Chizmeshya, A. V. G.; Sharma, R.; Carpenter, R. W. J. Aner Ceram. Soc: 2002, $85(4), 742$.
5. Moodie, A. F.; Warble, C. E. J. Cryst. Growth 1986, 74, 89.
6. Naono, H. Colloids Surf. 1989, 37, 55.
7. McKelvy, M. J.; Sharna, R.; Chizmeshya, A. V. G.: Carpenter, R. W.' Streib, K. Chem. Afater 2001, 13, 921.
8. Gillan, M. T.: Kantorovich, L. N.; Lindan, P. J. D. Chment Opinion in Solid State \& Materials Science 1996, 1, 820.
9. Gregg, S. J.: Razouk, R. I. J. Chem. Soc. 1949, S36.
10. Gam, P. D.: Freund, F. Trans. J. Bit. Ceram. Soc. 1975, $7 \neq(1), 23$.
11. Evans, I. V.; Whateley, T. L. Trans. Faraday Soc. 1967,63,2769.
12. Fukunda, Y.; Tanabe, K. Bull. Chem. Soc. Jpm 1973, 46, 1616.
13. Stark, J. V.; Park, D. G.; Lagadic, I.; Klabunde, K. J. Chem. Ifater: 1996, 8, 1904
14. Philipp, R.: Omata, K.; Aoki, A.: Fuijmoto, K. J. Catal. 1992. 134, 422.
15. Philipp, R.; Fujimoto, K. J. Phys. Chem. 1992, 96, 9035.
16. Pacchioni, G. Sumf. Sci. 1993, 281, 207.
17. Lee, M. H.: Park, D. G. Bull. Korean Chem. Soc. 2003, 2+(10), 1437.
18. Itoh, H.; Utamapanya, S.; Stark, J. V.; Klabunde K. J.; Sclup, J. R. Chem. Mater 1993, 5, 71.
19. Koper, O. B.: Lagadic, I.: Volodin, A.: Klabunde, K. T. Chem. Mater: 1997, 9, 2468.
20. Anderson, P. J.: Horlock, R. F.; Oliver, T. F. Trans. Faradow Soc. 1965, 61, 2754.
21. Coluccia, S.; Marchese, L.; Lavagnino, S.; Anpo, M. Spectrochim .icta.A 1987, 43(12), 1573.
22. Knözinger, E.; Jacob, K.; Singh, S:; Hofmann, P. Swf. Sci. 1993, 290, 388.
23. Tsy ganenko, A. A.; Filimonov, V. N. J. Mfot. Struc: 1973, 19.579.
24. Smimov, E. P.; Tsyganenko, A. A. Reac. Kimet. Catal. Lett. 1984, $26(3-4), 405$
25. Takezawa, N. Bull. Chem. Soc. Jpn 1971, f4, 3177.

26 Jones, C. F.; Reeve, R. A.; Rigg, R.; Segall, R. L.; Smart, R. C;; Turner, P. R. J. Chem. Soc., Faraday Trans. 1 1984, $80,2609$.
27. Lavalley, J. C.; Bensitel, M.; Gallas, J. P.; Lamotter, I.; Busca, G.; Lorenzelli, V. J. A Iol. Struc. 1988, 175, 453.
28. Shido, T.; Asakura, K.; Iwasawa, Y. J. Chem. Soc., Foraday Trans. l 1989, 85(2), 441.
29. Beruto, D.: Rossi, P. F.; Searcy, A. W. J. Phy Chem. 1985, 89, 1695.

[^0]:

