DOI QR코드

DOI QR Code

Rapid HPLC Method for the Simultaneous Determination of Eight Urinary Metabolites of Toluene, Xylene and Styrene

  • Lee, Cheol-Woo (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Lee, Jeong-Mi (Department of Pharmacology, University of Texas Southwestern Medical Center) ;
  • Lee, Jae-Hyun (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Eom, Han-Young (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Kim, Min-Kyung (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Suh, Joon-Hyuk (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Yeom, Hye-Sun (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Kim, Un-Yong (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Youm, Jeong-Rok (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Han, Sang-Beom (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University)
  • Published : 2009.09.20

Abstract

Toluene, xylene and styrene are volatile organic solvents that are commonly used in mixtures in many industries. Because these solvents are metabolized and then excreted in urine, their urinary metabolites are thought to be biomarkers of occupational exposure to these solvents. Therefore, a simple, rapid, and yet reliable analytical method for determining the metabolites is required for accurate biological monitoring. In the present study, a simple and rapid HPLC-UV method was developed for the simultaneous determination of eight major metabolites of toluene, xylene and styrene: hippuric acid (HA), mandelic acid (MA), o-, m- and p-methylhippuric acids (o-, m- and p-MHAs), and o-, m- and p-cresols. A monolithic column was employed as the stationary phase and several conditions, including flow rate, composition of mobile phase and column temperature, were variables for the optimization of the chromatographic resolution. All eight metabolites were successfully resolved within 5 minutes in 10% aqueous ethanol containing 0.3% acetic acid and 1.6% $\beta$-cyclodextrin, using a flow rate gradient of 1.0 - 5.0 mL/min at 25 ${^{\circ}C}$. The performance of this method was validated by linearity, intra- and inter-day accuracy, and precision. The linearity was observed with correlation coefficients of 0.9998 for HA, 0.9999 for MA, 0.9989 for o-MHA, 0.9998 for m-MHA, 0.9991 for p-MHA, 0.9997 for o-cresol, 0.9998 for m-cresol, and 0.9986 for p-cresol. The intra- and inter-day precision of the method were less than 5.89% (CV) and the accuracy ranged from 92.95 to 106.62%. The validity was further confirmed by analysis of reference samples that were prepared by the inter-laboratory quality assurance program of the Korea Occupational Safety and Health Agency (KOSHA, Seoul, Korea). All measured concentrations of the analytes agreed with the certified values.

Keywords

References

  1. Seedorff, L.; Olsen, E. Ann. Occup. Hyg. 1990, 34, 371 https://doi.org/10.1093/annhyg/34.4.371
  2. Chen, Z.; Liu, S. J.; Cai, S. X.; Yao, Y. M.; Yin, H.; Ukai, H.; Uchida, Y.; Nakatsuka, H.; Watanabe, T.; Ikeda, M. Occup. Environ. Med. 1994, 51, 47 https://doi.org/10.1136/oem.51.1.47
  3. Persson, B.; Fredriksson, M.; Olsen, K.; Boeryd, B.; Axelson, O. Cancer 1993, 72, 1773 https://doi.org/10.1002/1097-0142(19930901)72:5<1773::AID-CNCR2820720542>3.0.CO;2-6
  4. Heinrich-Ramm, R.; Jakubowski, M.; Heinzow, B.; Christensen, J. M.; Olsen, E.; Hertel, O. Pure Appl. Chem. 2000, 72, 385 https://doi.org/10.1351/pac200072030385
  5. Imbriani, M.; Ghittori, S. Int. Arch. Occup. Environ. Health 2005, 78, 1 https://doi.org/10.1007/s00420-004-0544-z
  6. Hee, S. Q. Biological Monitoring; an Introduction; Van Nostrand Reinhold: New York, U. S. A., 1993; p 471-478
  7. Inoue, O.; Seiji, K.; Suzuki, T.; Watanabe, T.; Nakatsuka, H.; Satoh, H.; Ikeda, M. Bull. Environ. Contam. Toxicol. 1991, 47, 204 https://doi.org/10.1007/BF01688641
  8. Astier, A. J. Chromatogr. 1993, 643, 389 https://doi.org/10.1016/0021-9673(93)80575-S
  9. Fujii, T.; Kawabe, S.; Horike, T.; Taguchi, T.; Ogata, M. J. Chromatogr. B 1999, 730, 41 https://doi.org/10.1016/S0378-4347(99)00175-9
  10. Yang, Y. D. Biomed. Chromatogr. 1998, 12, 47 https://doi.org/10.1002/(SICI)1099-0801(199803/04)12:2<47::AID-BMC717>3.0.CO;2-Y
  11. Chua, S. C.; Lee, B. L.; Liau, L. S.; Ong, C. N. J. Anal. Toxicol. 1993, 17, 129 https://doi.org/10.1093/jat/17.3.129
  12. Hansen, S. H.; D$\phi$ssing, M. J. Chromatogr. 1982, 229, 141 https://doi.org/10.1016/S0378-4347(00)86045-4
  13. Chakroun, R.; Faidi, F.; Hedhili, A.; Charbaji, K.; Nouaigui, H.; Laiba, M. B. J. Forensic. Sci. 2008, 53, 232 https://doi.org/10.1111/j.1556-4029.2007.00623.x
  14. Kongtip, P.; Vararussami, J.; Pruktharathikul, V. J. Chromatogr. B 2001, 751, 199 https://doi.org/10.1016/S0378-4347(00)00463-1
  15. Kataoka, H.; Manabe, K.; Nakase, S.; Makita, M. J. Pharm. Biomed. Anal. 1991, 9, 699 https://doi.org/10.1016/0731-7085(91)80209-R
  16. Pacenti, M.; Dugheri, S.; Villanelli, F.; Bartolucci, G.; Calamai, L.; Boccalon, P.; Arcangeli, G.; Vecchione, F.; Alessi, P.; Kikic, I.; Cupelli, V. Biomed. hromatogr. 2008, 22, 1155 https://doi.org/10.1002/bmc.1039
  17. Jiye, A.; Huang, Q.; Wang, G.; Zha, W.; Yan, B.; Ren, H.; Gu, S.; Zhang, Y.; Zhang, Q.; Shao, F.; Sheng, L. J. Anal. Biochem. 2008, 379, 20 https://doi.org/10.1016/j.ab.2008.04.025
  18. Marais, A. A.; Laurens, J. B. J. Sep. Sci. 2005, 28, 2526 https://doi.org/10.1002/jssc.200500205
  19. Szucs, S.; Toth, L.; Legoza, J.; Sarvary, A.; Adany, R. Arch. Toxicol. 2002, 76, 560 https://doi.org/10.1007/s00204-002-0384-0
  20. Saito, T.; Takeichi, S. J. Pharm. Biomed. Anal. 2002, 30, 365 https://doi.org/10.1016/S0731-7085(02)00268-6
  21. Laurens, J. B.; Mbianda, X. Y.; Spies, J. H.; Ubbink, J. B.; Vermaak, W. J. J. Chromatogr. B 2002, 774, 173 https://doi.org/10.1016/S1570-0232(02)00206-4
  22. Han, S. B.; Lee, S. J.; Lee, C. W.; Yoon, S. H.; Joung, S. K.; Youm, J. R. Anal. Sci. & Tech. 2006, 19, 433
  23. Yang, J. S.; Lee, M. Y.; Park, I. J.; Moon, Y. H.; Kang, S. K. Int. Arch. Occup. Environ. Health 1997, 69, 361 https://doi.org/10.1007/s004200050161
  24. International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use; Validation of analytical procedures; ICH-Q2A: Geneva, 1995
  25. Ogata, M.; Taguchi, T. Int. Arch. Occup. Environ. Health 1986, 58, 121 https://doi.org/10.1007/BF00380763
  26. Poggi, G.; Giusiani, M.; Palagi, U.; Paggiaro, P. L.; Loi, A. M.; Dazzi, F.; Siclari, C.; Baschieri, L. Int. Arch. Occup. Environ. Health 1982, 50, 25 https://doi.org/10.1007/BF00432491
  27. Arapitsas, P.; Turner, C. Talanta 2008, 74, 1218 https://doi.org/10.1016/j.talanta.2007.08.029
  28. Liu, J.; Sun, J.; Zhang, W.; Gao, K.; He, Z. J. Pharm. Biomed. Anal. 2008, 46, 405 https://doi.org/10.1016/j.jpba.2007.10.025
  29. Adcock, J. L.; Francis, P. S.; Agg, K. M.; Marshall, G. D.; Barnett, N. W. Anal. Chim. Acta 2007, 600, 136 https://doi.org/10.1016/j.aca.2007.03.048
  30. Lubda, D.; Cabrera, K.; Nakanishi, K.; Minakuchi, H. J. Sol-Gel Sci. Tech. 2002, 23, 185 https://doi.org/10.1023/A:1013711903868
  31. Tzanavaras, P. D.; Themelis, D. G. J. Pharm. Biomed. Anal. 2007, 43, 1526 https://doi.org/10.1016/j.jpba.2006.11.002
  32. Deeb, S. E.; Schepers, U.; Wätzig, H. J. Sep. Sci. 2006, 29, 1571 https://doi.org/10.1002/jssc.200600056
  33. de Melo, N. F.; Grillo, R.; Rosa, A. H.; Fraceto, L. F. J. Pharm. Biomed. Anal. 2008, 47, 865 https://doi.org/10.1016/j.jpba.2008.04.022
  34. Xiao, K. P.; Xiong, Y.; Rustum, A. M. J. Chromatogr. Sci. 2008, 46, 15 https://doi.org/10.1093/chromsci/46.1.15
  35. Chen, D.; Jiang, S.; Chen, Y.; Hu, Y. J. Pharm. Biomed. Anal. 2004, 34, 239 https://doi.org/10.1016/j.japna.2003.08.013

Cited by

  1. Monolithic silica with HPLC separation and solid phase extraction materials for determination of drugs in biological materials vol.3, pp.10, 2011, https://doi.org/10.1039/c1ay05243h
  2. Simultaneous determination of benzene, toluene, ethylbenzene, and xylene metabolites in human urine using electromembrane extraction combined with liquid chromatography and tandem mass spectrometry vol.38, pp.24, 2015, https://doi.org/10.1002/jssc.201500969
  3. Hollow Fiber Supported Liquid Membrane Extraction Combined with HPLC-UV for Simultaneous Preconcentration and Determination of Urinary Hippuric Acid and Mandelic Acid vol.7, pp.1, 2017, https://doi.org/10.3390/membranes7010008
  4. Direct methyl esterification with 2,2‐dimethoxypropane for the simultaneous determination of urinary metabolites of toluene, xylene, styrene, and ethylbenzene by gas chromatography‐mass spectrometry vol.61, pp.1, 2019, https://doi.org/10.1002/1348-9585.12026
  5. Benzene, toluene, ethylbenzene, and xylene: Current analytical techniques and approaches for biological monitoring vol.39, pp.1, 2020, https://doi.org/10.1515/revac-2020-0116