DOI QR코드

DOI QR Code

A Simple Phenol‐Indole Dye as a Chromogenic Probe for the Ratiometric Determination of Water Content in Organic Solvents

  • Published : 2009.01.20

Abstract

A simple dye having phenol and indole moieties was synthesized and its chromogenic signaling behaviors for the determination of water content in organic solvents were investigated. The compound revealed a pronounced chromogenic behavior in response to the variation of water content in water miscible aprotic organic solvents of acetone, acetonitrile, THF, and dioxane. Significant red shifts and changes in absorption spectra allowed a ratiometric analysis of the signaling behavior. The chemosensing behaviors were particularly pronounced in water content in less than 10% that is suitable for the application of the compound as a probe for the determination of water content in binary aqueous organic solutions having lower water content.

Keywords

References

  1. Hisamoto, H.; Tohma, H.; Yamada, T.; Yamauchi, K. I.; Siswanta, D.; Yoshioka, N.; Suzuki, K. Anal. Chim. Acta 1998, 373, 271 https://doi.org/10.1016/S0003-2670(98)00421-8
  2. Tsamis, E. D.; Avaritsiotis, J. N. Sens. Actuators A 2005, 118, 202 https://doi.org/10.1016/j.sna.2004.07.008
  3. Citterio, D.; Kawada, T.; Yagi, J.; Ishigaki, T.; Hisamoto, H.; Sasaki, S.; Suzuki, K. Anal. Chim. Acta 2003, 482, 19 https://doi.org/10.1016/S0003-2670(03)00200-9
  4. Hisamoto, H.; Manabe, Y.; Yanai, H.; Tohma, H.; Yamada, T.; Suzuki, K. Anal. Chem. 1998, 70, 1255 https://doi.org/10.1021/ac970637+
  5. Citterio, D.; Minamihashi, K.; Kuniyoshi, Y.; Hisamoto, H.; Sasaki, S.; Suzuki, K. Anal. Chem. 2001, 73, 5339 https://doi.org/10.1021/ac010535q
  6. Granzhan, A.; Ihmels, H.; Viola, G. J. Am. Chem. Soc. 2007, 129, 1254 https://doi.org/10.1021/ja0668872
  7. Bae, S. Y.; Arnold, B. R. J. Phys. Org. Chem. 2004, 17, 187 https://doi.org/10.1002/poc.712
  8. Niu, C. G.; Guan, A. L.; Zeng, G. M.; Liu, Y. G.; Li, Z. W. Anal. Chim. Acta 2006, 577, 264 https://doi.org/10.1016/j.aca.2006.06.046
  9. Kim, J. S.; Choi, M. G.; Huh, Y.; Kim, M. H.; Kim, S. H.; Wang, S. Y.; Chang, S.-K. Bull. Korean Chem. Soc. 2006, 27, 2058 https://doi.org/10.5012/bkcs.2006.27.12.2058
  10. Gruda, I.; Bolduc, F. J. Org. Chem. 1984, 49, 3300 https://doi.org/10.1021/jo00192a010
  11. Kumoi, S.; Kobayashi, H.; Ueno, K. Talanta 1972, 19, 505 https://doi.org/10.1016/0039-9140(72)80112-7
  12. Choi, M. G.; Kim, M. H.; Kim, H. J.; Park, J.-E.; Chang, S.-K. Bull. Korean Chem. Soc. 2007, 28, 1818 https://doi.org/10.5012/bkcs.2007.28.10.1818
  13. Liu, W.; Wang, Y.; Jin, W.; Shen, G.; Yu, R. Anal. Chim. Acta 1999, 383, 299 https://doi.org/10.1016/S0003-2670(98)00789-2
  14. Yang, X.; Niu, C. C.; Shang, Z. J.; Shen, G. L.; Yu, R. Q. Sens. Actuators B 2001, 75, 43 https://doi.org/10.1016/S0925-4005(00)00740-1
  15. Niu, C. G.; Qin, P. Z.; Zeng, G. M.; Gui, X. Q.; Guan, A. L. Anal. Bioanal. Chem. 2007, 387, 1067 https://doi.org/10.1007/s00216-006-1016-y
  16. Budag, R.; Giusti, L. A.; Machado, V. G.; Machado, C. Fuel 2006, 85, 1494 https://doi.org/10.1016/j.fuel.2005.12.023
  17. He, X.; Hu, S.; Liu, K.; Guo, Y.; Xu, J.; Shao, S. Org. Lett. 2006, 8, 333 https://doi.org/10.1021/ol052770r
  18. Lee, J. W.; Park, S. Y.; Cho, B. K.; Kim, J. S. Tetrahedron Lett. 2007, 48, 2541 https://doi.org/10.1016/j.tetlet.2007.02.026
  19. Singh, P. R.; Singh, D. U.; Samant, S. D. Synth. Commun. 2005, 35, 2133 https://doi.org/10.1080/00397910500180428
  20. Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem. 1996, 68, 1414 https://doi.org/10.1021/ac950944k
  21. Scheiner, S.; Kar, T.; Pattanayak, J. J. Am. Chem. Soc. 2002, 124, 13257 https://doi.org/10.1021/ja027200q
  22. Li, X. Y.; He, F. C. J. Mol. Struc. (Theochem) 1999, 459, 123 https://doi.org/10.1016/S0166-1280(98)00265-6
  23. Li, X. Y.; Liu, J. F. J. Comput. Chem. 2001, 22, 1067 https://doi.org/10.1002/jcc.1067

Cited by

  1. Highly sensitive fluorescent sensing for water based on poly(m-aminobenzoic acid) vol.48, pp.24, 2012, https://doi.org/10.1039/c2cc17856g
  2. A dual channel optical detector for trace water chemodosimetry and imaging of live cells vol.138, pp.10, 2013, https://doi.org/10.1039/c3an36887d
  3. Colorimetric enantioselective recognition of chiral secondary alcohols via hydrogen bonding to a chiral metallocene containing chemosensor vol.49, pp.75, 2013, https://doi.org/10.1039/c3cc43083a
  4. Ratiometric Determination of Water Content in Acetonitrile by a Fluorescein Derivative Bearing Two Pyrene Subunits vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2995
  5. A New Chromogenic Water Sensing System Utilizing Deprotonation and Protonation of Anion Receptor vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4244
  6. N-Heteroaryl-1,8-naphthalimide fluorescent sensor for water: Molecular design, synthesis and properties vol.88, pp.3, 2011, https://doi.org/10.1016/j.dyepig.2010.07.009
  7. Colorimetric Signaling of Water Content in Acetonitrile by Phenolic Dye-Fluoride Complexes vol.32, pp.9, 2009, https://doi.org/10.5012/bkcs.2011.32.9.3517
  8. Chromogenic signalling of water content in organic solvents by hydrazone-acetate complexes vol.92, pp.3, 2009, https://doi.org/10.1016/j.dyepig.2011.07.019
  9. Development of a rhodamine-benzimidazol hybrid derivative as a novel FRET based chemosensor selective for trace level water vol.4, pp.41, 2009, https://doi.org/10.1039/c4ra02585g
  10. Development of a rhodamine-benzimidazol hybrid derivative as a novel FRET based chemosensor selective for trace level water vol.4, pp.41, 2009, https://doi.org/10.1039/c4ra02585g
  11. 8(E)-4-[{2-(2,4-dinitrophenyl)hydrazono}benzene-1,3-diol] as a solvatochromic Schiff base and chromogenic signaling of water content by its deprotonated form in acetonitrile vol.4, pp.52, 2009, https://doi.org/10.1039/c4ra03249g