References
- Brimblecombe, R. W.; Duncan, W. A. M.; Durant, G. J.; Emmett, J. C.; Ganellin, C. R.; Parons, M. E. J. Int. Med. Res. 1975, 3, 86
- Tanigawara, Y.; Aoyama, N.; Kita, T.; Shirakawa, K.; Komada, F.; Kasuga, M. K. Clin. Pharmacol. Ther. 1999, 66, 528 https://doi.org/10.1016/S0009-9236(99)70017-2
- Hunkeler, W.; Mohler, H.; Pieri, L.; Polc, P.; Bonetti, E. P.; Cumin, R.; Schaffner, R. W. Nature 1981, 290, 514 https://doi.org/10.1038/290514a0
- Abrahams, S. L.; Hazen, R. J.; Batson, A. G.; Phillips, A. P. J. Pharmacol Exp. Ther. 1989, 249, 359
- Radziszewski, B. Chem. Ber. 1882, 15, 1493 https://doi.org/10.1002/cber.18820150207
- Japp, F. R.; Robinson, H. H. Chem. Ber. 1882, 15, 1268 https://doi.org/10.1002/cber.188201501272
- Grimmett, M. R. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: NewYork, 1996; Vol. 3, p 77
- Balalaie, S.; Arabanian, A.; Hashtroudi, M. S. Mont. Fur. Chem. 2000, 131, 945 https://doi.org/10.1007/s007060070049
- Sharma, G. V. M.; Jyothi, Y.; Lakshmi, P. S. Syn. Commun. 2006, 36, 2991 https://doi.org/10.1080/00397910600773825
- Heravi, M. M.; Bakhtiari, K.; Oskooie, H. A.; Taheri, S. J. Mol. Cata. A: Chem. 2007, 263, 279 https://doi.org/10.1016/j.molcata.2006.08.070
- Siddiqui, S. A.; Narkhede, U. C.; Palimkar, S. S.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron 2005, 61, 3539 https://doi.org/10.1016/j.tet.2005.01.116
- Shaabani, A.; Rahmati, B.; Aghaaliakbari, J.; SafaeiGhomi, Synth. Commun. 2006, 36, 65 https://doi.org/10.1080/00397910500328969
- Kidwai, M.; Mothsra, P.; Bansal, V.; Goyal, R. Mont. Fur. Chem. 2006, 137, 1189 https://doi.org/10.1007/s00706-006-0518-9
- Sangshetti, J. N.; Kokare, N. D.; Kothakar, S. A.; Shinde, D. B. Mont. Fur. Chem. 2008, 139, 125 https://doi.org/10.1007/s00706-007-0766-3
- Usyatinsky, A. Y.; Khmelnitsky, Y. L. Tetrahedron Lett. 2000, 41, 5031 https://doi.org/10.1016/S0040-4039(00)00771-1
- Wolkenberg, S. E.; Winoski, D. D.; Leister, W. H.; Wang, Y.; Zhao, Z.; Lindsley, C. W. Org. Lett. 2004, 6, 1453 https://doi.org/10.1021/ol049682b
- (Wang, L.-M. et al., 1573) Wang, L. M.; Wang, Y. H.; Tian, H.; Yao, Y. F.; Shao, J. H.; Liu, B. J. Fluorine Chem. 2006, 127, 1570 https://doi.org/10.1016/j.jfluchem.2006.08.005
- Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7817 https://doi.org/10.1021/ja00546a049
- Pawar, S. S.; Dekhane, D. V.; Shingare, M. S.; Thore, S. N. Chin. Chem. Lett. 2008, 19, 1055 https://doi.org/10.1016/j.cclet.2008.06.028
- Hangarge, R. V.; Karale, B. K.; Mane, A. S.; Chavan, V. P.; Jarikote, D. V.; Shingare, M. S. Green Chem. 2001, 3, 310 https://doi.org/10.1039/b106871g
- Shindalkar, S. S.; Madje, B. R.; Shingare, M. S. J. Korean Chem. Soc. 2005, 49, 377 https://doi.org/10.5012/jkcs.2005.49.4.377
- Tu, S. J.; Zhu, X. T.; Fang, F.; Zhang, X. J.; Zhu, S. L.; Li, T. J.; Shi, D. Q.; Wang, X. S.; Ji, S. J. Tetrahedron Lett. 2003, 44, 6153 https://doi.org/10.1016/S0040-4039(03)01466-7
- Pingwah, T. Org. Synt. 2005, 81, 262 https://doi.org/10.15227/orgsyn.081.0262
- Chaudhuri, M. K.; Hussain, S.; Lakshmi Kantam, M.; Neelima, B. Tetrahedron Lett. 2005, 46, 8329 https://doi.org/10.1016/j.tetlet.2005.09.167
- Tu, S. J.; Zhu, X. T.; Fang, Zhang, X. J.; Zhu, S. L.; Li, T. J.; Shi, D. Q.; Wang, X. S.; Ji, S. J. Chine. J. Chem. 2005, 23, 596 https://doi.org/10.1002/cjoc.200590596
- Chaudhuri, M. K.; Hussain, S. J. Mol. Cat. A 2007, 269, 214 https://doi.org/10.1016/j.molcata.2007.01.014
- Kondaiah, G. C. M.; Amarnath Reddy, L.; Srihari Babu, K.; Gurav, V. M.; Huge, K. G.; Bandichhor, R.; Pratap Reddy, P.; Bhattacharya, A.; Vijaya Ananda, R. Tetrahedron Lett. 2008, 49, 106 https://doi.org/10.1016/j.tetlet.2007.11.008
- Kumar, A.; Maurya, R. A. Tetrahedron Lett. 2008, 49, 5471 https://doi.org/10.1016/j.tetlet.2008.07.019
- Gaplovsky, A.; Gaplovsky, M.; Toma, S.; Luche, J. L. J. Org. Chem. 2000, 65, 8444 https://doi.org/10.1021/jo000611+
- Rajagopal, R.; Jarikote, D. V.; Srinivasan, K. V. Chem. Commun. 2002, 616
- Song, B. A.; Zhang, G. P.; Yang, S.; Hu, D. Y.; Jin, L. H. Ultra. Chem. 2001, 13, 1544
- Shindalkar, S. S.; Madje, B. R.; Shingare, M. S. Ind. J. Hetero. Chem. 2005, 15, 81
- Shelke, K. F.; Madje, B. R.; Sadaphal, S. A.; Shitole, N. V.; Shingare, M. S. Org. Chem.: Ind. J. 2008, 4, 277
- Hangarge, R. V.; Jarikote, D. V.; Shingare, M. S. Green Chem. 2002, 4, 266 https://doi.org/10.1039/b111634g
- Madje, B. R.; Shindalkar, S. S.; Ware, M. N.; Shingare, M. S. Arkivoc 2005, 14, 82
- Shindarlkar, S. S.; Madje, B. R.; Shingare, M. S. Mendeleev Commun. 2007, 17, 43 https://doi.org/10.1016/j.mencom.2007.01.017
- Sadaphal, S. A.; Shelke, K. F.; Sonar, S. S.; Shingare, M. S. Central. Euro. J. Chem. 2008, 6, 622 https://doi.org/10.2478/s11532-008-0069-5
- Diwakar, S. D.; Bhagwat, S. S.; Shingare, M. S.; Gill, C. H. Bioorg. Med. Chem. Lett. 2008, 18, 4678 https://doi.org/10.1016/j.bmcl.2008.07.007
- Sapkal, S. B.; Shelke, K. F.; Shingare, M. S. Tetrahedron Lett. 2009, 50, 1754 https://doi.org/10.1016/j.tetlet.2009.01.140
- Shelke, K. F.; Madje, B. R.; Sapkal, S. B.; Shingate, B. B.; Shingare M. S. Green Chem. Lett. Rev. 2009 (In press)
Cited by
- Alum catalyzed simple and efficient synthesis of 5-arylidene-2,4-thiazolidinedione in aqueous media vol.3, pp.1, 2010, https://doi.org/10.1080/17518250903478345
- Under Conventional Heating Conditions or Microwave Irradiation vol.41, pp.16, 2011, https://doi.org/10.1080/00397911.2010.502994
- Ammonium metavanadate as an efficient catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles vol.48, pp.3, 2011, https://doi.org/10.1002/jhet.548
- Zinc (II) [tetra(4-methylphenyl)] Porphyrin: a Novel and Reusable Catalyst for Efficient Synthesis of 2,4,5-trisubstituted Imidazoles Under Ultrasound Irradiation vol.55, pp.5, 2011, https://doi.org/10.5012/jkcs.2011.55.5.787
- Multicomponent reactions in unconventional solvents: state of the art vol.14, pp.8, 2012, https://doi.org/10.1039/c2gc35635j
- Magnetic nanoparticle supported ionic liquid as novel and effective heterogeneous catalyst for synthesis of substituted imidazoles under ultrasonic irradiation vol.144, pp.9, 2013, https://doi.org/10.1007/s00706-013-1015-6
- An Efficient and Green Method for Synthesis of 2,4,5-Triarylimidazoles without Use of Any Solvent, Catalyst, or Solid Surface vol.2013, pp.2090-2018, 2013, https://doi.org/10.1155/2013/512074
- Brønsted acid ionic liquid [Et3NH][HSO4] as an efficient and reusable catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles vol.39, pp.3, 2013, https://doi.org/10.1007/s11164-012-0669-8
- , AN EFFICIENT AND RECYCLABLE CATALYST vol.43, pp.2, 2013, https://doi.org/10.1080/10826068.2012.719845
- Sonochemistry: Synthesis of Bioactive Heterocycles vol.44, pp.15, 2014, https://doi.org/10.1080/00397911.2014.893360
- ChemInform Abstract: An Efficient Synthesis of 2,4,5-Triaryl-1H-imidazole Derivatives Catalyzed by Boric Acid in Aqueous Media under Ultrasound-Irradiation. vol.40, pp.39, 2009, https://doi.org/10.1002/chin.200939117
- Microwave-Assisted Synthesis of 3-Styrylchromones in Alkaline Ionic Liquid vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.2883
- Nickel Nanoparticles: An Ecofriendly and Reusable Catalyst for the Synthesis of 3,4-Dihydropyrimidine-2(1H)-ones via Biginelli Reaction vol.31, pp.2, 2009, https://doi.org/10.5012/bkcs.2010.31.02.351
- An Efficient One-Pot Strategies for the Synthesis of [1,3] Oxazine Derivatives vol.54, pp.4, 2009, https://doi.org/10.5012/jkcs.2010.54.4.437
- Sulfated Tin Oxide: A Reusable and Highly Efficient Heterogeneous Catalyst for the Synthesis of 2,4,5-Triaryl-1H-imidazole Derivatives vol.42, pp.10, 2009, https://doi.org/10.1080/00397911.2010.541744
- Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as recyclable catalyst for synthesis of imidazoles under microwave irradiation vol.125, pp.4, 2009, https://doi.org/10.1007/s12039-013-0462-2
- Fe3O4@chitosan nanoparticles: a valuable heterogeneous nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles vol.4, pp.40, 2009, https://doi.org/10.1039/c4ra03176h
- One-pot synthesis of multisubstituted imidazoles under solvent-free conditions and microwave irradiation using Fe3O4@SiO2–imid–PMAn magnetic por vol.39, pp.5, 2015, https://doi.org/10.1039/c5nj00050e
- Synthesis of imidazole derivatives: Ester and hydrazide compounds with antioxidant activity using ionic liquid as an efficient catalyst vol.57, pp.2, 2009, https://doi.org/10.1002/jhet.3808
- Organocatalyzed Solvent Free and Efficient Synthesis of 2,4,5‐Trisubstituted Imidazoles as Potential Acetylcholinesterase Inhibitors for Alzheimer's Disease vol.17, pp.3, 2009, https://doi.org/10.1002/cbdv.201900493
- Sugar-Catalyzed Synthesis of Triarylimidazoles-An Exemplary Model of Sweet Chemistry vol.56, pp.3, 2009, https://doi.org/10.1134/s1070428020030227
- Green approaches for the synthesis of poly-functionalized imidazole derivatives: A comprehensive review vol.4, pp.None, 2009, https://doi.org/10.1016/j.crgsc.2021.100175
- Fe3O4@SiO2/Bipyridinium Nanocomposite as a Magnetic and Recyclable Heterogeneous Catalyst for the Synthesis of Highly Substituted Imidazoles Via Multi-Component Conden vol.41, pp.4, 2009, https://doi.org/10.1080/10406638.2019.1616306