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Giusti-Suzor and Fano introduced translations of the scales of Lu-Fano plots by phase renormalization in order to 
decouple the intra- and inter-channel couplings in multichannel quantum defect theory (MQDT). Their theory was 
further developed by others to deal with systems involving a larger number of channels. In different directions, 
MQDT was reformulated into forms with a one-to-one correspondence to those in Fano's configuration mixing 
theory of resonance for photofragmentation processes involving one closed and many open channels. In this study, 
the theory was further developed to fully reveal the coupling nature, decoupling of the background and resonance 
scattering in physical scattering matrices as well as to further extract the dynamic parameters undiscovered by Fano 
and his colleagues. This theory was applied to the photoabsorption spectrum of H2 observed by Herzberg's group.
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Introduction

Although multichannel quantum defect theory (MQDT) is 
a powerful theory of resonance that can describe complex 
spectra including both bound and continuum regions with 
only a few parameters, the resonance structures are not 
identified transparently in its formulation due to the indirect 
treatment of resonance.1 In order to identify the resonance 
terms, a special treatment is needed, such as that introduced 
by Giusti-Suzor and Fano for the two channel case.2,3 They 
noticed that the usual Lu-Fano plot often obscures the 
symmetry apparent in its extended version. This symmetry 
can be brought out in the MQDT formulation by shifting the 
origin of the plot to the center of symmetry using the phase- 
shifted base pairs first considered in Ref.[4]. Their theory was 
further developed by others in an attempt to deal with systems 
involving a larger number of channels.5-6 In a different 
direction, MQDT was reformulated into forms with a one- 
to-one correspondence to those in Fano's configuration mixing 
(CM) theory of resonance for photofragmentation processes 
involving a single closed and many open channels.7-8 The 
reformulation relies on an identification of the background 
scattering matrix so of the MQDT version, which satisfies the 
unitarity and is simultaneously diagonalizable with the open 
channel part Koo of the sub-matrices of Seaton's short-range 
reactance matrix K .1 However, such identification was 
motivated simply by mathematics without any physical basis.

Although fundamental in nature, it is very important to 
have a physical basis for this identification because theories 
cannot be developed further without a proper understanding. 
Giusti-Suzor and Fano tackled this problem using Lippmann- 
Schwinger's theory.9 In this study, it was tackled by examining 
the transformation relations to identify the true resonance 
scattering. The results revealed the coupling nature, decoupling 
of the background and resonance scatterings, and extracted 
further dynamic parameters undiscovered by Fano et al. The 
theory was applied to the photoabsorption spectrum of H2 

observed by Herzberg's group.10

Brief Introduction of MQDT

In the multichannel quantum defect theory of the photofrag
mentation process, the coordinate R for the relative motion of 
colliding partners along which fragmentation occurs is divided 
into two ranges R < R0 and R > R0, the inner and outer ones, 
respectively. In contrast to the inner range, where transfers in 
energy, momentum, angular momentum, spin, or the formation 
of a transient complex occur due to the strong interactions 
there, channels are decoupled in an outer range. Consequently, 
the motion is governed by ordinary second-order differential 
equations and can be described by a superposition of the 
energy-normalized regular and irregular base pair fj (R) and 
gj (R) or the incoming and outgoing base pair exp(-ikjR) and 
exp(ikR). Using these pairs, N independent degenerate solutions 
of the Schrodinger equation for the decoupled motion in R > R0 

for an N-channel system can be expressed as a standing- wave 
type

N

Y (RG = £e j (ffi) [ fj (R心-gj (R)Ki ] (I)
j=1

or an incoming-wave type

"RG = 文 ① 】 ㈣ [ 名 (R)&-西 (R)이 ⑵

j=1

where Q (w) are the channel basis functions for the coor
dinate space excluding R, and 為 are the modified outgoing 
and incoming base pair defined as (士 f + igj) / 2. Using the 
quantum defect theory parameters n・,烏 and Dj in Ref. [11] for 
an arbitrary field,宓 are given in the outer range R > R0 by 
-i(m / 2nk)1/2 exp(± ij fj for the open channels and ±(m7 
/nKj产 exp(± 泌)(Dj fj ± iD'1 打、)/ 2 for the closed channels, 
where fj denotes exp(± ikjR). Kj and &• are the (j, i) -elements 
of the short-range reactance and scattering matrices, respec
tively, and are related to each other in matrix notation by S = 
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(1 - iK)(1 + iK)-' (S is taken as a complex conjugate of the usual 
definition, for convenience).

Although all the N solutions are needed to describe the 
motion in the intermediate range, some become closed and no 
longer exist in the limit of R — s. Therefore, classification of 
these channels as open or closed is meaningful only at a large 
R. Nonetheless, it may still be convenient to keep this 
classification in the intermediate range. The notations P and 
Q were used for the sets of open and closed channels, respec
tively, and the super-indices o and c were used for the dynamic 
quantities belonging to the open and closed channels, 
respectively. The wave function, T(-) for the photofragmenta
tion process into the i-th fragmentation channel should satisfy 
the incoming-wave boundary condition, T(-) t 为孑(& & - 
评Sji) at a large R, which can be obtained by making a linear 
combination of the incoming channel basis functions 屮厂)of 
Eq. (2). The physical scattering matrix S can be obtained by 
substituting the explicit forms for 游'given above and then 
setting the coefficients of the exponentially increasing terms 
to zero as follows:

S = Soo - Soc (Scc - e피'、)-1 Sco . (3)

Whilst the above equation shows how the resonance arises by 
the channels being closed at a large R, the background and 
resonance contributions are intertwined in a subtle way to 
prevent efforts to determine the dynamic interactions between 
them.

Separation of Background and Resonance Teims 
in the Physic지 Scattering Matrix

Experience in the configuration interaction resonance 
theory11 suggests that it is imperative to use some 'effective' 
S oo that is simultaneously diagonalizable with K oo imbedded 
in Soc. This logical train of thought leads us to introduce d)o, 
which is defined as (1 - iK°°)(1 + iK°°)-1, to supersede S°o. 
Note that *o can be expressed as Soo - So(Scc +1)-1 Sco, whose 
form is quite similar to that of the physical scattering matrix S, 
except that - exp(2i") is replaced by 1. Hence, the physical 
scattering matrix (3) can be formulated in terms of d)o by 
expressing [ Scc- exp(2i”) ]-1 into (Scc+ 1)-1 using the matrix 
identity of A'1 = B + B」U(C - UB'XU)'-UB'X, where A = B - 
UC'XU. The relation,

(Scc - e2')-1 = (Scc +1)-1 + *(1 + Kc)

x (tan ' + Kc) 1(1 + iKcc) , (4)

one obtains using (Scc + 1)-1 = 1/2(1 + iKc) allows us to rewrite 
Eq. (3) into

S = b°o - 2i(1 + iK°°)-1 Koc (tan' + K)-1 K(1 + iKo)-1 .
(5)

Since do)= (1 - iK°°)(1 + iK。，1,(fo and Ko commute with each 
other and can be diagonalized simultaneously as (fo = 

Ue眼 UT and K°° = U tan S°UT. Substitution of these into (5) 
yields

S = U或[1 + 2诣(tan ' + K )-1 孕]/* UT

三 Ue-* Sr/'U (6)

where f denotes cos ^UTK0C and the part inside the bracket is 
denoted as Sr. The form of the above physical scattering 
matrix suggests that Sr is related to the resonance. The 
resonance structure in the physical scattering matrix can best 
be seen in the behavior of its eigenphase shift. The orthogonal 
matrix that diagonalizes it is related to the geometrical factor 
and represents the frame transformation between the reso
nance and fragmentation eigenchannels. The dynamic beha
vior of the resonance pertaining to potential scattering can be 
seen in its eigenphase shifts. However, each eigenphase shift 
is not only affected by the resonance but also by the avoided 
interactions between the different eigenphases. Hence, the 
pure resonance behavior is only observed in the eigenphase 
sum, which can be obtained by calculating the determinant of 
the physical scattering matrix. The calculation of its deter
minant can be accomplished using the matrix identity 
det(1-UV) = det(1-VU) as follows

det(S) = e“* det[1 + 2if矶tan' + Kc)-1 ]

=負* det(tan " + 必 *) 
det (tan p + Kc)

(7)

where 牙；is the shorthand notation for the sum、&3°i of the 
eigenphase shifts of a°°. The last equality was obtained using 
the equation

STS = Kco [1 + (K°° )2 ] -1 Koc =-颖Kcc) • (8)

Note that relation (7) holds for any arbitrary number of closed 
channels, and is not restricted to a single one. Eq. (8) becomes 
3 (kcc) = -£2 for a system involving 1 closed channel. Eq. (7) 
can be written in a more suggestive form by identifying 
exp(-2 诣％) with det0°°)

det( S) = det(b°°)
det (tan p + Kc *) 
det (tan ' + Kc) (9)

This form suggests that 3 흪 is a better notation for 3 %, which 
will be clarified later. On the other hand, det(S) can be 
identified with exp(-2i3s). For the system with 1 closed chan
nel, tan p + kc is just a number, and there is no need to take its 
determinant. In this case, we obtain

tan(曷-*0)[tan' + 汎(必)]=3(必)=-f . ㈣

Another way of observing this equation comes from a 
consideration of the reactance matrix Kr, which corresponds 
to Sr as -i(1 - S)(1 + S)-1. Using Eq. (9) in Ref. [7] and the 
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projection operator Pr defined there, Sr can be written as Pb + 
Pr (tan § + Kcc*) / (tan § + K) where use is made of another 
projection operator, Pb, which is defined as 1 - Pr and satisfies 
PbPr = 0 and Pb = 1. Using the properties of the projection 
operators, Kr can be calculated as Pr 3 (kcc) / [tan § + 琅(k")]. 
As Kr can be expressed as tan &Pr in terms of the phase shift 
matrices, we obtain

tan dr = 3 (kcc) / [ tan § + $R(kcc) ] . (11)

This identification allows ds - d% = dr to be deduced from Eq. 
(10).

Transformation Relation of Background and 
Resonance Terms under Phase Renormalization

Now let us apply the phase renormalizations n\ = n + 짜* 
and §' = §i + 짜丄; for the open and closed channels, res
pectively. In the new phase renormalized base functions, Eq. 
(9) becomes

det (tan §' + K,cc *)
det(S ') = W 'oo ) det (tan § , + k，“) . (12)

Consider each of the two factors in the right-hand side of Eq. 
(12) separately. Substituting §' - 피Efor §i in tan § + Kc, we 
obtain

tan(§' - 찌f) + Kc
=[tan§'(Kcc sinn广 + cosn#) + Kc cosn广-sinn广]

x (cos 짜f + tan§'sinnwc)-1
=[tan§' + K,cc ](Kccsinn广 + cosn#)

x (cos 찌f+ tan§kin 짜/')-1 (13)

This means that det(tan § + Kcc*) / det(tan § + Kcc) is trans
formed to

det( tan § + Kcc * ) = det( tan § + Kcc *) det( cot 짜/ + Kcc) .
det( tan §' + k'cc) det( tan § + Kcc) det( cot 짜/ + Kcc *)

(14)

For systems with 1 closed channel, Kc can be written as tan Ac, 
as described in Appendix A, where Ac is the complex phase 
shift considered by Dubau and Seaton3 and is given by dc - iyc. 
The first term of the right hand side of Eq. (14) can then be 
shown to be equal to

det(tan § + Kcc*) sin(§ + Ac*) cos Ac
--------------- - -- ---  :----------l = e-2id . (15) 
det(tan § + k )-------sin(§ + A) cos A *

The right-hand side of the first equality of Eq. (15) is 
composed of two ratios. The first is the sole source of 
long-range dynamics because the complex phase shift 代 

includes only short-range dynamics and the long-range 
dynamics are only contained in §. This means that strongest 
energy dependence arises from the first ratio terms, as energy

sensitive dynamics occur only over the long-range. Similarly, 
det(cot 짜/ + Kcc*) / det(cot 짜/ + Kcc) can be shown to be equal 
to cos △'애cos Ac / cos A'ccos Ac*. The formulation in terms of 
the complex phase shifts allows use of the laws of trigono
metry, and reveals that Eq. (14) is simply an identity in that 
context.

The numerator in the left-hand side of Eq. (15) is just a 
complex conjugate of the denominator whereby the modulus 
of their quotient is unity and thus the quotient can be written as 
exp(-2idr) giving the second equality of Eq. (15). Here dr is the 
phase of the denominator and is equal to the one in Eq. (11). 
Likewise, the phase / can be introduced to denote the 
quotient det(cot 짜/ + Kcc*)/det(cot 짜/ + K勺 as exp(-2in/r). 
Transformation (14) can then be expressed in terms of the 
phase shifts as

Sr ' = Sr -叫, (16)

which takes the form of phase renormalization, and was not 
introduced on purpose but was induced. Before investigating 
the properties of this transformation further, consider the 
transformation relation of(fo, which is the remaining part of 
Eq. (9).

To determine the transformation relation between 苻 and 
af0°, first consider the definition of af0°:

bo。= S 'oo - S 吹(S 'cc +1)-1 S 'co

= en* so(°—Soc (Scc + / 때‘)1 Sco e자* (17)

If exp(2渺)is replaced with -exp(-2in/) in Eq. (4), we obtain

(S。。+ e「그찌-1

= (Scc + 1)-1 + 2 (1 + iKcc )(cot 짜* + Kcc )-1 (1 + iKcc)
(18)

By substituting Eq. (18) and using -2i(1 + iKoo)-1 Koc(1 + iK)1 
for S眼 and its transpose for Sco, Eq. (17) yields the transfor
mation relation for °。。under the phase renormalization as 
follows:

b 'oo= en* [b°° + 2i(1 + K°° )-1 Koc (cot 짜* + 广 )-1

Kco (1 + K。。)-1 ]評.(19)

As in Eq. (6), the above equation can be simplified using the 
simultaneous diagonalization of bo and Ko as

crwo =剛讨[1 + 2依(cot 砂 +K )-1《]血5*
(20)

Using the same technique for obtaining det(S) in Eq. (7), the 
determinant of b°° can be easily obtained as follows:

det(b，oo) = e一2眼=e 软砲-炎)det(cot n*c + Mc *) 
det(cot n* + Kc)
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=e m det(b。。)det(cot n"c + K *) 
det(cot n〃c + Kc). (21)

det(S') = exp(2in火%) det(S) was obtained by substituting Eqs. 
(14) and (21) into Eq. (12) and using Eq. (7), and can be 
expressed in terms of the phase shifts as d^ = 法 - 짜埴. This 
suggests that % + 法 is an invariant form under phase renor
malization.

Extraction of Background and Resonance Dynamic 
Parameters from Lu-Fano Plot

Henceforth, SB will be used for the eigenphase shifts of o°o 
instead of So i.e., o°° = exp(-2iSB) and similarly S B will be used 
for(产.Using these, Eq. (21) can be expressed in a physically 
more transparent form &을 =母 一n(處 - 卩 r), where 源 
denotes 京：.The form suggests the definition of a new 
quantum defect 如 for 卩章 - Nr, whereupon 契 = 源； 一 찌*. 
In contrast to 卩%, whose value is at our disposal, the value of 
如 cannot be taken arbitrarily and is fixed by the values of 卩章 
and * (or equally 卩r). Overall, 矣 = 源^ - 짜」良 where each 
term of 为，源、and * can be decomposed into 源板=^^ + 源, 
爲：=^B + 源 and * = * + *r, respectively. Note that in 
this decomposition into two parts, the background and 
resonance parts in the decomposition is phase renormalized in 
its own way as 源M = 源 - 짜* and 源 = 源 - 짜*, respec 
tively. Although phase renormalization is also performed for a 
closed channel as P = P + 짜」, its influence on the physical 
scattering matrix cannot be observed directly, which is in 
contrast to the case of n* in the open channels, where 源 is 
influenced in a linear manner. It influences indirectly through 
the form of *r , which is related to *c nonlinearly as 
exp(-2in^r) = (cot 砂 + ^cc*) / (cot 砂 + k"). The equation can 
be written in terms of the complex phase shifts as follows:

cot n* + kcc * = _** = cos △" * cos 氐 
cot n* + kcc e cos △ cos △ * (22)

where △* denotes △ 一 짜*. Another relation tan 짜丄r = 3 (kcc) / 
[cot 짜火 + 沮 (kcc)] can be obtained considering the quotient of 
the real and imaginary parts of cot 짜火 + kcc. Since 3 (k") = 
-g2 tan 짜火 can be equated to -项 / [cot 짜火 + 沮 (須)|.

Although the strongest energy dependence of det(s) 
originates from the second term of the right-hand side of Eq. 
(9), it still contains an energy insensitive short-range dynamic 
term, as shown in Eq. (15). This energy insensitive term can 
be removed by the phase renormalization of n* =源.Let us 
denote the renormalized 源 as 源.The representation obtained 
by this phase renormalization can be called the tilde represen

. _ _ ~ .一
tation. Now,源 satisfies

-2 源 sin(P + △ *) sin(P + Ac *), ,=---------=----------
sin(p + △ ) sin(P + △). (23)

__ ~ . …
Note that 源 is determined only by the energy sensitive terms. 
This indicates that energy-insensitive background contributions

Ta비e 1. Dynamic parameters extracted from the Lu-Fano plot of H2.

源C 

0.40
Y

0.23
源

0.04

* *r 」
0.13 -0.031 -0.018

汎(kcc ) 3( KCC) g
0.40 -0.27 0.27

汎(~CC) 3( ~CC) 〜c 
g

0 -0.23 0.23

are completely removed~in the formula for 源 and the purely 
resonance terms for 源 remain. Therefore, in the tilde 
representation, only subindex r, which signifies resonance, is 
perfectly correct.

The situation so far can be interpreted as follows. Phase 
renormalization is performed for the base pair defined in the 
long-range while the background and resonance scattering do 
not entirely come from the long-range dynamics. This suggests 
that the separation of background and resonance scatterings 
cannot be achieved directly by phase renormalization. The 
present derivation confirms that their nature is not precisely 
compatible with the closed and open nature of the channels. 
Besides the presence of closed-channels, additional require
ments are needed to be in the correct resonance eigenchannels. 
Eq. (15) shows that cos △ / cos △ * needs to be removed in 
order to have a pure resonance nature. This is achieved using 
the phase renormalization by 짜* which cannot be controlled 
directly by the phase renormalization accessible through the 
fragmentation channels but can be performed indirectly.

With 짜」 = Sc satisfied, the tilde representation is not 
completely specified and there is still freedom in choosing the 
value of *. The logical choice will be that the sum of the 
background eigenphase shifts become zero, i.e. 源=0. Since 
源B = 源; - 짜」 and *B = * - *r, this can be obtained with 
* = *r + 源B / n. A complete definition of the tilde represen 
tation demands this condition in addition to 짜火 = S. As both 
phase renormalizations are accounted, Eq. (10) becomes

tan 禺 tan P =3(Kcc )=-宀 (24)

Since 짜* = 8C holds in this representation, the renormalized 
complex phase shift & becomes a purely imaginary number, 
and ~CC becomes tan & = tan(- if) = -i tanh/ and g = 
tanh Y. It should be noted that the tilde representation 
satisfying 源B = 0 and 尺 =-if is still not unique, even though 
the remaining indeterminacy is not related to the resonance 
and is thus trivial. Refer to Ref. [7] for various representations 
satisfying them. Interestingly, the symmetric Lu-Fano plot 
was obtained not only from the graph of (P,源)by simply 
translating the origin of the coordinate system by the respec 
tive -파火 and 찌* but also from that of (P, 源： 一 源;) given by 
Eq. (10) by the respective -찌火 and 짜丄r. Since the Lu-Fano 
plot of (p,源:)can be obtained easily from the spectrum, * 
and g2 can be derived easily by symmetrizing it into the 
graph given by Eq. (24). Recall that 3C was obtained from

C ~2卩 . Eq. (A2) of tan 짜火 = -g tan §c can be used to obtain
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L니-Fano plot of 电

p/n
Figure 1. Lu-Fano plot of H2 drawn using data from Table 1 with the 
experimental spectroscopic data indicated by * for comparison.

弘r. A subsequent translation of the Lu-Fano plot yields 
沉(xcc) and &'. With these, the selfconsistency of the ex
perimental data can be examined by checking the relation
ship between the two coupling strengths W and ^2 given by 
§ = 一 sinh 2产 / (cos 23c + cosh 2，)=〔乎 /(~~4 sin2 3C + co s2时 
This relation can be simplified to g cos n〃c = gcosn匕 
which is confirmed numerically using the values in Table 1. 
It becomes the physically evident g = g when ^ = ur or 
when 说=0. Similarly, the formula for 沉(xcc) can be 
written as (tan2 짜/ - tan2 n『)cos2 짜丄r cot 砂, which becomes 
zero when ^ = Rr.

Extraction of Dynamic Parameters 
from the Lu-Fano Plot of H2

Now, let us apply the theory to the extraction of dynamical 
parameters from the Lu-Fano plot of H2 which is simplest case 
of one open and one closed channels. In this case, all 
sub-matrices become scalars and the sums of the phases 
become simple phases so that the sub-index £ signifying the 

~ ~summation is no longer needed. The values of K and K of 
~ ~ ~K are obtained explicitly as zero and K = K = g as descri

bed by Suzor and Fano.2 Soo = Scc = (1 一 g2)/(l + g2) and~ Sc .
Soc = Sco = 一 2ig /(l + g ) can be obtained using these values.

The basic parameters are the phases 矛 and Y of Scc, 
which are represented in the form of the complex phase 
聲=矛 - Y, where Scc is given by exp(-2iAc). The coupling 

Sparameter g between the open and closed channels can then 
S2 cbe obtained as g = tanh Y . Another basic parameter is the 

background eigenphase 胪 obtained from eitherk°° = 
tan 3B or So = exp(-2i3B). The tilde representation can be 
derived using the phase renormalization, / =矛 / n and 
卩? = /r +学/ n, where 卩 r was obtained from tan 짜丄r = 
-g2 tan 3C of Eq. (A2) in Appendix A. When the short-range 
K matrix is obtained from Lu-Fano plots, S cc can be 
calculated from [l 뉘찌 + i(K°o 一K )]/[l -|K| + i(K°o + K)]. 
5c and yc(or g2) can be calculated from the phase and 

absolute value of S cc . The remaining parameters can be 
calculated using the method described above. The values of 
the dynamic parameters extracted from the Lu-Fano plot of H2 

following the procedure described above are shown in Table
l. The Lu-Fano plot of H2 is shown in Fig. l along with the 
experimental spectroscopic data taken from Ref. [10] for 
comparison.

Results and Discussion

This study obtained the physical basis for the unitary 
factorizations of the physical scattering matrix S into a°° and 
(tan p + Kc *) (tan p + Kc )-1, which are not themselves pure 
background and resonance terms but can be transformed to 
them under the phase renormalization. The essential step was 
in the recognition that the nature of background and resonance 
scatterings is not compatible with the closed and open nature 
of the channels. Thus physically meaningful procedure 
should be involved in finding phase renormalizations in the 
background and resonance channels, not in the open and 
closed channels. In contrast to the phase renormalizations in 
the open and closed channels which can be directly controllable 
by means of the adjustments in the 'reference potentials' in the 
core region, phase renormalizations in the background and 
resonance channels can only be determined indirectly. Such 
renormalizations were obtained by examining the transfor
mation relations for both terms of the unitary factorizations of 
S. The extent of the phase renormalization in the resonance 
channel was identified as being determined by the coupling 
strength g2 between the open and closed channels in the form

S2 c cof tan 짜丄r = -g tan d with a phase shift d due to the 
background scattering. By removing the phase renormalization 
in the resonance channel from the phase renormalization in 
open channels, the phase renormalization in the background 
channels was identified. With these phase renormalizations, 
decoupling of the background and resonance scatterings from 
their entanglement in the scattering matrix was accomplished 
and the fundamental dynamic parameters pertaining to them 
were identified.

This theory was applied to the photoabsorption spectrum of 
H2 observed by Herzberg's group, and additional dynamic 
parameters were extracted. Future studies will apply the 
theory to photoabsorption spectra of rare gases where more 
channels are involved. In addition, the present theory will be 
extended to systems involving more than one closed channel. 
In this case, phase renormalization for the imaginary phase 
shifts may play an important role when more than one 
imaginary phase shift is present.
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Appendix A: Complex Phase Shifts

S°° or Scc do not satisfy the unitary condition when both open 
and closed channels exist. If a system of one closed channel is 
considered for simplicity, the modulus of S cc is smaller than unity 
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and cannot be expressed as exp(-2 泊c). To account for the leakage 
into open channels, let us use a complex phase shift △: = Sc -讨 to 
represent Scc as Scc = e~2i^ = e~22SC e~2Y where S찌 = exp(-2 Yc). 
One of the merits of using complex phase shifts can be seen in the 
transformation of kcc under phase renormalization. Note that with a 
complex phase shift, kcc can be represented as Kc - tan Ac = tan(矛 
- ") Its transformation under phase renormalization of p - p + 짜f 
is simply a linear transformation of the phase shifts given by Kcc - 
tan A - tan(Ac - 짜f). Using the angle sum and difference relationships 
of trigonometry, tan(Ac - nf) can be expressed in terms of tan Ac and 
the relationship between Kcc and Kc,

Kcc - (Kc cos 짜f - sin 찌f、) (Kc sin 찌f + cos nfc)-1, (Al)

can be obtained easily. Note that the usual phase renormalizations 
were performed only for real phase shifts without touching the 
imaginary ones.

As another application, consider Eq. (22) with the tilde repre
sentation as the primed one. Since Ac = -iU,驾-tanAc equals 
-i than Y. For cos Ac, cos Ac - cosh yc so that cos Ac - cos Ac *. From 
this, exp(infr) is simply proportional to cos Ac *. Then, tan nf - -tan 矛 
than yc or

tan 짜丄r = 一亨 2 tan 5c (A2) 

can be obtained easily using the an이e sum and difference rela
tionships of trigonometry for cos(5c - iyc).
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