DOI QR코드

DOI QR Code

Prediction of Hydroxyl Substitution Site(s) of Phenol, Monochlorophenols and 4-Chloronitrobenzene by Atomic Charge Distribution Calculations

  • Published : 2009.04.20

Abstract

The predictions of the radical reaction sites for phenol, 2-, 3- and 4-chlorophenols (CPs) and 4-chloronitrobenzene (CNB) were studied by atomic charge distribution calculations. The atomic charge distributions on each atom of these molecules were obtained using the CHelpG and MK (Merz-Kollman/Singh) methods with the optimized structural parameters determined by DFT calculation at the level of BLYP/6-311++G(d,p). By comparing the experimentally obtained hydroxyl addition site(s) and the calculated atomic charges on carbon atoms of phenol and CPs, we found that hydroxyl substitution by oxidation reaction mainly occurred to the carbon(s) with high atomic charges. With these results, we were easily able to predict the position(s) of the ·OH reaction site(s) of phenol, CPs and CNB through atomic charge distribution calculations.

Keywords

References

  1. Jones, P. A. In Chlorophenol and Their Impurities in the Canadian Environment, Environment Canadian Econ. Tech. Rev. Report EP S-3-EC-81-2; 2000; p 434.
  2. Priority substances list assessment report: halogenated compounds; Canadian Environmental Protection Act: 1994; p74.
  3. Kennes, C.; Wu, W. M.; Bhatnagar, L.; Zeikus, J. G. Appl. Microbiol. Biotechnol. 1996, 44, 801. https://doi.org/10.1007/BF00178622
  4. Matafonova, G.; Christofi, N.; Batoev, V.; Sosnin, E. Chemosphere 2008, 70, 1124. https://doi.org/10.1016/j.chemosphere.2007.08.022
  5. Jung, O.-J. Bull. Korean Chem. Soc. 2001, 22, 1183.
  6. Kim, J.-Y.; Moon, S.-H. J. Air & Waste Manage. Assoc. 2000, 50, 555. https://doi.org/10.1080/10473289.2000.10464040
  7. Leung, S. W.; Watts, R. J.; Miller, G. C. J. Environ. Qual. 1992, 21, 377. https://doi.org/10.2134/jeq1992.213377x
  8. Lee, C.; Yang, W.; Parr, R. Phys. Rev. B 1998, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  9. Mineva, T.; Russo, N. Inter. J. Quantum Chem. 1997, 61, 665. https://doi.org/10.1002/(SICI)1097-461X(1997)61:4<665::AID-QUA8>3.0.CO;2-U
  10. Fueno, H.; Tanaka, K.; Sugawa, S. Chemosphere 2002, 48, 771. https://doi.org/10.1016/S0045-6535(02)00141-8
  11. Akai, N.; Kudoh, S.; Takayanagi, M.; Nakata, M. J. Photochem. and Photobiol. A: Chem. 2001, 146, 49. https://doi.org/10.1016/S1010-6030(01)00555-X
  12. Conner, A. H. J. Appl. Polym. Sci. 2000, 78, 355. https://doi.org/10.1002/1097-4628(20001010)78:2<355::AID-APP150>3.0.CO;2-3
  13. Mitsunaga, T.; Conner, A. H.; Hill, Jr. C. G. J. Appl. Polym. Sci. 2002, 86, 135. https://doi.org/10.1002/app.10926
  14. Mitsunaga, T.; Conner, A. H.; Hill, Jr. C. G. J. Wood Sci. 2002, 48, 153. https://doi.org/10.1007/BF00767293
  15. Jung, O.-J. Bull. Korean Chem. Soc. 2001, 22, 850.
  16. Sung, M.; Huang, C. P. Envirn. Sci. Technol. 2002, 36, 2911. https://doi.org/10.1021/es010559e
  17. CS Chem3D Pro; Cambridgesoft Co.: Cambridge, MA, USA, 1999.
  18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Rega, N.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Gaussian Inc.: Pittsburgh, PA, 2001.礙돀잖⨀塨?⨀잖⨀儙돐잖⨀잖⨀ₙ잖⨀⤙댐䁽ጄȀ
  19. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  20. Adomo, C.; Barone, V. Chem. Phys. Lett. 1977, 274, 242. https://doi.org/10.1016/S0009-2614(97)00651-9
  21. Breneman, C. M.; Francl, M. M. J. Comp. Chem. 1990, 11, 361. https://doi.org/10.1002/jcc.540110311
  22. Besler, B. H.; Merz, Jr., K. M.; Kollman, P. M. J. Comp. Chem. 1990, 11, 431. https://doi.org/10.1002/jcc.540110404
  23. Singh, U. C.; Kollman, P. A. J. Comp. Chem. 1984, 5, 129. https://doi.org/10.1002/jcc.540050204
  24. Venkatadri, R.; Peters, R. W. Hazard Waste & Hazard Mater. 1993, 10, 107. https://doi.org/10.1089/hwm.1993.10.107
  25. Walling, C. Acc. Chem. Res. 1975, 8, 125. https://doi.org/10.1021/ar50088a003
  26. Sung, M.; Huang, C.-P. J. Hazard Mater. 2007, 141, 140. https://doi.org/10.1016/j.jhazmat.2006.06.091
  27. Barbeni, M.; Minero, C.; Pelizzetti, E. Chemosphere 1987, 16, 2225. https://doi.org/10.1016/0045-6535(87)90281-5
  28. Du, Y.; Zhou, M.; Lei, L. J. Hazard Mater. 2007, B139, 108.
  29. http://www-old.itcilo.org.
  30. Martha, W.; Susan, B.; Lorraine, Y. S.; Margaret N. F. In The Merck Index, 10th ed.; Merck & Co.: Rathway, 1983.
  31. Hayek, N. A.; Dore, M. Environ. Technol. Letters 1985, 6, 37. https://doi.org/10.1080/09593338509384317
  32. Shen, J.-m.; Chen, Z.-l.; Xu, Z.-z.; Li, X.-y.; Xu, B.-b.; Qi, F. J. Hazard. Mater. 2008, 152, 1325. https://doi.org/10.1016/j.jhazmat.2007.08.009
  33. Norena-Franco, L.; Hernandez-Perez, I.; Aguilar-Pliego, J.; Maubert-Franco, A. Catalysis Today 2002, 75, 189. https://doi.org/10.1016/S0920-5861(02)00067-6
  34. Bansal, V. K.; Kumar, R.; Prasad, R.; Prasad, S.; Niraj J. Mol. Catalysis A: Chem. 2008, 284, 69. https://doi.org/10.1016/j.molcata.2007.12.030
  35. Parida, K. M.; Mallick, S. J. Mol. Catalysis A: Chem. 2008, 279, 104. https://doi.org/10.1016/j.molcata.2007.10.005
  36. Wang, L.; Kong, A.; Chen, B.; Ding, H.; Shan, Y.; He, M. J. Mol. Catalysis A: Chem. 2005, 230, 143. https://doi.org/10.1016/j.molcata.2004.12.027
  37. Miller, J. S. Water Res. 2005, 39, 412. https://doi.org/10.1016/j.watres.2004.09.019
  38. Bertelli, M.; Selli, E. J. Hazd. Mater. 2006, B138, 46.
  39. Waldner, G.; Pourmodjib, M.; Bauer, R.; Neumann-Spallart, M. Chemosphere 2003, 50, 989. https://doi.org/10.1016/S0045-6535(02)00612-4
  40. Mazellier, P.; Bolte, M. Chemosphere 2001, 42, 361. https://doi.org/10.1016/S0045-6535(00)00157-0

Cited by

  1. Prediction of Reaction Intermediate(s) of Pentachlorophenol Degradation: An Application of Atomic Charge Distribution Calculations vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3549
  2. ]selenophenes via Regioselective Intramolecular Transformation of 4-(3-Nitroaryl)-1,2,3-selenadiazoles vol.15, pp.7, 2013, https://doi.org/10.1021/ol400547n
  3. strain KB2 vol.31, pp.3, 2013, https://doi.org/10.3109/10242422.2013.796456
  4. Understanding and tailoring the degradation of PVA-tyramine hydrogels vol.132, pp.26, 2015, https://doi.org/10.1002/app.42142