DOI QR코드

DOI QR Code

Selective Ring-opening Fluorination of Epoxide: An Efficient Synthesis of 2'-C-Fluoro-2'-C-methyl Carbocyclic Nucleosides

  • Liu, Lian-Jin (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University) ;
  • Kim, Si-Wouk (BK21-Project Team, College of Pharmacy, Chosun University) ;
  • Lee, Won-Jae (BK21-Project Team, College of Pharmacy, Chosun University) ;
  • Hong, Joon-Hee (BK21-Project Team, College of Pharmacy, Chosun University)
  • Published : 2009.12.20

Abstract

An efficient synthetic route of novel 2′(${\alpha}$)-C-fluoro-2′(${\beta}$)-C-methyl carbocyclic nucleoside analogues is described. The key fluorinated intermediate 7 was prepared from the epoxide intermediate 5 via selective ring-opening of epoxide. Coupling of 7 with nucleosidic bases under the Mitsunobu reactions followed by deprotection afforded the target carbocyclic nucleoside analogues. The synthesized compounds were evaluated as inhibitors of the hepatitis C virus (HCV) in Huh-7 cell line in vitro.

Keywords

References

  1. Tan, S. L.; Pause, A.; Shi, Y.; Sonenberg, N. Nat. Rev. Drug Discovery 2002, 1, 867-881 https://doi.org/10.1038/nrd937
  2. Heathcote, E.; Shiffman, M.; Cooksley, W.; Dusheiko, G. M.; Lee, S. S.; Balart, L.; Reindollar, R.; Reddy, R. K.; Wright, T. L.; Lin, A.; Hoffman, J.; De Pamphilis, J. N. Engl. J. Med. 2000, 343, 1673-1680 https://doi.org/10.1056/NEJM200012073432302
  3. (a) Clark, J. L.; Hollecker, L.; Mason, J. C.; Stuyver, L. J.; Tharnish, P. M.; Lostia, S.; McBrayer, T. R.; Schinazi, R. F.; Watanabe, K. A.; Otto, M. J.; Furman, P. A.; Stec, W. J.; Patterson, S. E.; Pankiewicz, K. W. J. Med. Chem. 2005, 48, 5504-5508.(Please refer to the other references for details:no.13-no.14) https://doi.org/10.1021/jm0502788
  4. El Kouni, M. H. Curr. Pharm. Des. 2002, 8, 581-593 https://doi.org/10.2174/1381612024607171
  5. Carrol, S. S.; Tomassini, J. E.; Bosserman, M.; Getty, K.; Stahlhut, M. W.; Eldrup, A. B.; Bhat, B.; Hall, D.; Simcoe, A. L.; LaFemina, R.; Rutkowski, C. A.; Wolanski, B.; Yang, Z.; Migliaccio, G.; De Francesco, R.; Kuo, L. C.; MacCross, M.; Olsen, D. B. J. Biol. Chem. 2003, 278, 11979-11984 https://doi.org/10.1074/jbc.M210914200
  6. Eldrup, A. B.; Allerson, C. R.; Bennett, C. F.; Bera, S.; Bhat, B.; Bhat, N.; Bosserman, M. R.; Brooks, J.; Burlein, C.; Carrol, S. S.; Cook, P. D.; Getty, K. L.; MacCross, M.; McMasters, D. R.; Olsen, D. B.; Prakash, T. P.; Prhavc, M.; Song, Q. L.; Tomassini, J. E.; Xia, J. J. Med. Chem. 2004, 47, 2283-2295 https://doi.org/10.1021/jm030424e
  7. (a) Borthwick, A. D.; Biggadike, K. Tetrahedron 1992, 48, 571- 623.(Please refer to the other references for details:no.15-no.18) https://doi.org/10.1021/cr0203701
  8. Gosselin, G.; Criffe, L.; Meillon, J.-C.; Storer, R. Tetrahedron 2006, 62, 906-914 https://doi.org/10.1016/j.tet.2005.10.037
  9. Shimizu, M.; Nakahara, Y. J. Fluorine Chem. 1999, 99, 95-97 https://doi.org/10.1016/S0022-1139(99)00180-3
  10. Kitade, Y.; Ando, T.; Yamaguchi, T.; Hori, A.; Nakanishi, M.; Ueno, Y. Bioorg. Med. Chem. 2006, 14, 5578-5583 https://doi.org/10.1016/j.bmc.2006.04.023
  11. Michel, B. Y.; Strazewski, P. Tetrahedron 2007, 63, 9836-9841 https://doi.org/10.1016/j.tet.2007.06.100
  12. Kim, H. J.; Sharon, A.; Bal, C.; Wang, J.; Allu, M.; Huang, Z.; Murray, M. G.; Bsaait, L.; Schinazi, R. F.; Korba, B.; Chu, C. K. J. Med. Chem. 2009, 52, 206-213 https://doi.org/10.1021/jm801418v
  13. (b) Smith, D. B. Kalayanov, G.; Sund, C.; Winqvist, A.; Pinho, P.; Maltseva, T.; Morisson, V.; Leveque, V.; Rajyaguru, S.; Le Pogam, S.; Najera, I.; Benkestock, K.; Zhou, X. X.; Maag. H.; Cammack, N.; Martin, J. A.; Swallow, S.; Johansson, N. G.; Klumpp, K.; Smith, M. J. Med. Chem. 2009, 52, 219-223. https://doi.org/10.1021/jm800981y
  14. (c) Li, H.; Baik, Y. C.; Hong, J. H. Bull. Korean Chem. Soc. 2009, 30, 1147-1151. https://doi.org/10.5012/bkcs.2009.30.5.1147
  15. (b) Huryn, D. M.; Okabe, M. Chem. Rev. 1992, 92, 1745-1768. https://doi.org/10.1021/cr00016a004
  16. (c) Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S.; Earl, R. A.; Guedj, R. Tetrahedron 1994, 50, 10611-10670. https://doi.org/10.1016/S0040-4020(01)89258-9
  17. (d) Crimmins, M. T. Tetrahedron 1998, 54, 9229-9272. https://doi.org/10.1016/S0040-4020(98)00320-2
  18. (e) Ariona, O.; Gomez, A. M.; Lopez, J. C.; Plumet, J. Chem. Rev. 2007, 107, 1919-2036 https://doi.org/10.1021/cr0203701

Cited by

  1. Synthesis of Novel 4′-Cyclopropyl-5′-norcarbocyclic Adenosine Phosphonic Acid Analogues vol.29, pp.11-12, 2010, https://doi.org/10.1080/15257770.2010.535802
  2. Synthesis of Novel 6′-Spirocyclopropyl-5′-Norcarbocyclic Adenosine Phosphonic Acid Analogues as Potent Anti-Hiv Agents vol.30, pp.10, 2011, https://doi.org/10.1080/15257770.2011.602656
  3. Racemic Synthesis of Novel 6'-Methylene-5'-norcarbocyclic Purine Phosphonic Acid Analogues via Mitsunobu Reaction vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2689
  4. ChemInform Abstract: Selective Ring-Opening Fluorination of Epoxide: An Efficient Synthesis of 2′-C-Fluoro-2′-C-methyl Carbocyclic Nucleosides. vol.41, pp.18, 2010, https://doi.org/10.1002/chin.201018210
  5. Synthesis and Anti-HCV Activity of 3',5'-cyclic SATE Phosphonodiester Nucleoside as a Novel Prodrug vol.31, pp.4, 2009, https://doi.org/10.5012/bkcs.2010.31.04.915
  6. Synthesis and Anti-HIV Activity of Novel 4'-Ethyl-5'-norcarbocyclic Adenosine Phosphonic Acid Analogues vol.31, pp.11, 2009, https://doi.org/10.5012/bkcs.2010.31.11.3348
  7. Synthesis and evaluation of novel 6',6'-difluoro 5'-deoxycarbocyclic phosphonic acid nucleosides as antiviral agents. vol.32, pp.7, 2009, https://doi.org/10.1080/15257770.2013.797582
  8. Synthesis and antiviral evaluation of novel 2',2'-difluoro 5'-norcarbocyclic phosphonic acid nucleosides as antiviral agents. vol.33, pp.1, 2009, https://doi.org/10.1080/15257770.2013.854380
  9. Efficient Synthesis of Novel 4'-Trifluoromethyl-5'-norcarbocyclic Purine Phosphonic Acid Analogs by Using the Ruppert-Prakash Reaction vol.35, pp.9, 2009, https://doi.org/10.5012/bkcs.2014.35.9.2743
  10. Recent advances in the synthesis of cyclic 5′-nornucleoside phosphonate analogues vol.463, pp.None, 2018, https://doi.org/10.1016/j.carres.2018.04.009