DOI QR코드

DOI QR Code

A Thermodynamic Study on the Interaction of Quinolone Antibiotics and DNA

  • Lee, Byung-Hwa (Department of Chemistry, Yeungnam University) ;
  • Yeo, Ga-Young (Department of Chemistry, Yeungnam University) ;
  • Jang, Kyeung-Joo (Department of Chemistry, Yeungnam University) ;
  • Lee, Dong-Jin (Department of Advanced Materials and Environmental Engineering, Kyoungil University) ;
  • Noh, Sang-Gyun (Department of Chemical Engineering, Dongyang University) ;
  • Cho, Tae-Sub (Department of Chemistry, Yeungnam University)
  • Published : 2009.05.20

Abstract

Fluorescence of quinolones including norfloxacin, ciprofloxacin and S- and R-ofloxacin is quenched upon association with single and double-stranded DNA (ss- and ds-DNA). The ratios of fluorescence intensity in the presence of DNA to its absent were plotted with respect to the DNA concentration to construct the Stern-Volmer plot. The slope of the Stern-Volmer plot become larger as the temperature is lowered, ensuring that the fluorescence quenching is static process, i.e., the fluorescence is quenched by formation of the non-fluorescent complex between quinolone and DNA. In the static quenching mechanism, the quenching constant which is equivalent to the slope of the Stern-Volmer plot, is considered as the equilibrium constant for the association of quinolones and DNA. From the temperature-dependent equilibrium constant, ${\Delta}H^0\;and\;{\Delta}S^0$ was obtained using the van’t Hoff relation. In general, association of the quinolone with ds- as well as ss-DNA is energetically favorable (an exothermic) process while the entropy change was unfavorable. Due to the steric effect of the substituents, the effect of the quinolone ring is smaller on the ss-DNA compared to ds-DNA.

Keywords

References

  1. Hooper, D. C.; Wolfson. J. S., Quinilone-Antibaterial Agent, 2nd Ed; American Society for Microbiology: Washington, DC, for review (1993)
  2. Shen, L. L.; Pernet, A. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 307 https://doi.org/10.1073/pnas.82.2.307
  3. Shen, L. L.; Kohlbrenner, W. E.; Weigl, D.; Baranowski, J. J. Biol. Chem. 1989, 264, 2973
  4. Shen, L. L.; Baranowski, J.; Pernet, A. G. Biochemistry 1989, 28, 3879 https://doi.org/10.1021/bi00435a038
  5. Shen, L. L.; Mitscher, L. A.; Sharma, P. N.; O'Donnekk, T. J.; Chu, D. W. T.; Cooper, C. S. Biochemisty 1989, 28, 3886
  6. Sissi, C.; Perdona, E.; Domenici, E.; Feriani, A.; Howells, A. J.; Maxwell, A.; Palumbo, M. J. Mol. Biol., 2001, 311, 195 https://doi.org/10.1006/jmbi.2001.4838
  7. Lee, E.-J.; Yeo, J.-A.; Hung, K.; Hwangbo, H. J.; Lee, G.-J.; Kim, S. K. Arch. Biochem. Biophys. 2001, 395, 21 https://doi.org/10.1006/abbi.2001.2563
  8. Hwangbo, H. J.; Yun, B. H.; Cha, J. S.; Kwon, D. Y.; Kim, S. K. Eur. J. Phar. Sci. 2003, 18, 197 https://doi.org/10.1016/S0928-0987(02)00279-8
  9. Palu, G.; Valisena, S.; Peracchi, M.; Palumbo, M. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9671 https://doi.org/10.1073/pnas.89.20.9671
  10. Bailly, C.; Colson, P.; Houssier, C. Biochem. Bioph. Res. Commun. 1998, 243, 844 https://doi.org/10.1006/bbrc.1998.8189
  11. Son, G.-W.; Yeo, J.-A.; Kim, M.-S.; Kim, S. K.; Holmen, A.; $\AA$kerman, B.; Norden, B. J. Am. Chem. Soc. 1998, 120, 6451 https://doi.org/10.1021/ja9734049
  12. Son, G.-W.; Yeo, J.-A.; Kim J.-M.; Kim, S. K.; Moon, H.-R.; Nam, W.-W. Biophys. Chem. 1998, 74, 225 https://doi.org/10.1016/S0301-4622(98)00178-1
  13. Yeo, J.-A.; Cho, T.-S.; Kim, S. K.; Moon, H.-R.; Jhon, G.-J.; Nam, W.-W. Bull. Kor. Chem. Soc. 1998, 19, 449
  14. Lee, E.-J.; Yeo, J.-A.; Lee, G.-J.; Han, S. W.; Kim, S. K. Eur. J. Biochem. 2000, 267, 6018 https://doi.org/10.1046/j.1432-1327.2000.01677.x
  15. Lee, H. M.; Kim, J.-K.; Kim, S. K. J. Biomol. Str. Dyn. 2002, 19, 1083 https://doi.org/10.1080/07391102.2002.10506811
  16. Lee, H. M.; Kim, H. D.; Kim, J. M.; Kim, J.-K.; Kim, S. K. J. Biomol. Str. Dyn. 2007, 25, 231 https://doi.org/10.1080/07391102.2007.10507172
  17. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum Press: New York, U. S. A., 1983; p 257
  18. Hwangbo, H. J.; Lee, Y.-A.; Park, J. H.; Lee, Y. R.; Kim, J. M.; Kim, S. K. Bull. Kor. Chem. Soc. 2003, 24, 579 https://doi.org/10.5012/bkcs.2003.24.5.579
  19. Koo, K. N.; Lee, B. H.; Han, S. W.; Kim, S. K.; Lee, H. M. Bull. Kor. Chem. Soc. 2008, 29, 2103 https://doi.org/10.5012/bkcs.2008.29.11.2103

Cited by

  1. Study of the interaction between ofloxacin and human serum albumin by spectroscopic methods vol.26, pp.6, 2011, https://doi.org/10.1002/bio.1302
  2. Studies on the Interaction Mechanism of Pyrene Derivatives with Human Tumor-Related DNA vol.17, pp.12, 2012, https://doi.org/10.3390/molecules171214159
  3. Drug–DNA complexation as the key factor in photosensitized thymine dimerization vol.19, pp.7, 2017, https://doi.org/10.1039/C6CP08485K