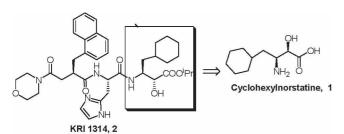
Stereoselective Synthesis of Diverse α-Hydroxy-β-amino Acids and It's Application for Synthesis of Dipeptide Expecting as a Protease Inhibitor

Sang Hun Jang, Ju Young Kim, Min Kyu Kim, Jeong Woo Han, Ki Hun Park, Yong-Jin Yoon, and Sang-Gyeong Lee*

Department of Chemistry and Research Institute of Life Science, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University, Jinju 660-701. Korea. *E-mail: leesang@gnu.ac.kr

*Department of Agricultural Chemistry and Division of Applied Life Science. Gyeongsang National University, Jinju 660-701, Korea

[‡]Department of Chemistry and Research Institute of Natural Science, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University, Jinju 660-701, Korea Received September 4, 2008, Accepted November 18, 2008


Few α -hydroxy- β -amino acids were synthesized $vi\alpha$ various nucleophilic addition of the epoxide and followed by stereoselective nucleophilic substitution reaction and eliminative cleavage of the acetal selectively in diacetal compound. One of the synthesized α -hydroxy- β -amino acid reacted with L-leucine methylester to give corresponding dipeptide in good yields.

Key Words: α-Hydroxy-β-amino acids, Nucleophilic addition. Epoxide ring opening. Eliminative cleavage

Introduction

Amino alcohols especially vicinal *syn*- and *anti*-hydroxy amino units are an important class of compounds. Because of these units are constituents of many natural products such as paclitaxel (taxol). KRI 1230 and KRI 1314. In recent years, *syn*-α-hydroxy-β-amino acids like cyclohexylnorstatine 1 have received considerable interest from a pharmaceutical point of view. Because of cyclohexylnorstatine is the C-terminal residue of KRI 1314 2, a tripeptide with potent rennin inhibitory activity (Fig. 1). ^{2,3}

Many methods have already been developed for the synthesis of these α -hydroxy- β -amino acid units. Most of the early studies used chiral natural products as starting materials were limited in their flexibility of structural modification. In

Figure 1. Cyclohexylnorstatine 1 is one of the part of the KRI 1314 which is potent remain inhibitor.

R = cyclohexyl, isopropyl, methyl

Figure 2. Regioselective epoxide ring opening reaction for synthesis of diverse α -hydroxy- β -amino acids.

connection with these points, we noticed that a nucleophilic addition of epoxide is very useful methodology for synthesis of various α-hydroxy-β-amino acids.⁵

In this paper, we wish to report synthetic routes for α -hydroxy- β -amino acid derivatives via the various nucleophilic addition of epoxide and followed by regio- and stereoselective nucleophilic substitution reaction and eliminative cleavage of the acetal selectively in diacetal compounds (Fig. 2).

Scheme 1. Reagents and conditions; a) 2,2-Dimethoxypropane, MeOH, Acetone, TsOH, H_2O , rt, 97% b) MsCl, Et₃N, CH₂Cl₂, 0 °C, rt, 98%. c) NaBH₄, THF, 0 °C, 95%. d) NaOMe, MeOH, rt, 87%. e) RMgX, Cul, THF, -10 °C to rt, 80%.

Results and Discussion

The compound 1 prepared easily by the usual method⁶ from *D*-glucono-δ-lactone. After mesylation and ester reduction of 1, treated with NaOMe to afford epoxide 4 in quantitative yield (Scheme 1).

To open epoxide ring of 4, we reacted various nucleophiles such as alkyl lithiums. Grignard reagents and Gilman reagents. Treatment of epoxide 4 with alkyl lithium reagents (methyl lithium, isopropyl lithium and cyclohexyl lithium) gave many undesired product as mixture of stereoselectively and regioselectively uncontroled product. On the other hand, treatment of 4 with Grignard reagents (methyl, isopropyl and cyclohexyl Grignard reagents) gave unexpected the halogen attacked compound (6. X = Cl) as major product instead of desired 5a-c. After several unsuccessful trials, the ring opening reaction of epoxide 4 using Grignard reagents in presence of copper(I) iodide gave alcohol 5 as major product (Table 1). According to these results, we thought the copper(I) iodide is useful for the regioselective ring opening of 4. Under the these consideration, we reacted 4 with cuprates (Gilman reagent) to give desired product 5a-c in reasonable yield.

The alcohol 5 was converted to azido compound 8 through mesylation and $S_{\rm N}2$ intramolecular displacement by sodium azide. The azido compound 8 was hydrogenated with H_2 in the presence of 10% Pd/C followed by protection of amino group with 9-phenyl-9-fluorenyl (Pf) bromide to give 10 in good yield (Scheme 2). At this stage, we introduced the Pf group as a protection of amino group because there are remains many steps should be proceed under the strong acid conditions.

The selective cleavage of terminal isopropylidene group of 10 was proceed in 70% acetic acid condition to give 11 in good yield. The diol 11 was converted to alcohol 12 by using NaIO₄ and NaBH₄. The alcohol 12 was mesylated and followed by substitution with lithium iodide to give 14. The isopropylidene iodide 14 was treated with *n*-BuLi to give allylic alcohol 15

through simultaneous elimination reaction. Allylic alcohol 15 was protected with benzyl bromide and followed by dihydroxylation of alkene with OsO_4 to give corresponding diol. The obtained diol compound oxidizied with $NaIO_4$ to give aldehyde and followed by oxidation with $KMnO_4$ resulted to desired α -hydroxy- β -amino carboxylic acid 17 in good yield. The 17a has different stereochemistry with cyclohexylnorstatine (1) but it has the same skeleton and functional groups and 17b has the same skeleton and functional groups with (2 S_3R_3)-3-amino-2-hydroxy-5-methylhexanoic acid which is the N-terminal amino acid of amastatin that a tripeptide which has been found to inhibit leucine aminopeptidase and aminopeptidase A_3 .

Among of 17a, 17b and 17c, compound 17a reacted with L-leucine methylester under the presence of DCC, HOBT and Et_3N in THF to give desired dipeptide 18 in good yield. Hydrolysis of 18 by LiOH in mixed solvent (THF: $H_2O = 2$:

Table 1. Ring Opening Reaction of Epoxide 4 by Various Nucleophiles.

Scheme 2. Reagents and conditions; a) Ms-Cl₁ Et₃N₁ CH₂Cl₂, 0°C, 98%. b) NaN₃ DMF, 80°C, 87%. c) 10% Pd/C, H₂, MeOH, rt, 95%. d) Pf-Br, Pb(NO₃)₂, CH₂Cl₂, rt, 87%. e) 70% Acetic Acid, CH₂Cl₂, rt, 90%. f) NaIO₄, NaBH₄, H₂O/EtOH(1/2), rt, 95%. g) Ms-Cl₃ Et₃N₁, CH₂Cl₂, rt, 98%. h) Lil₃ DMF, 80 °C, 80%. j) *n*-BuLi₄, 1'HF, -40 °C, 90%. j) NaH, Benzylbromide, 1'HF, rt, 90%. k) 60% NMO, OsO₄, Acetone, NaIO₄, EtOH/H₂O(1/1), K₂CO₃, KMnO₄, THF/H₂O(1/1), rt, 75%.

Scheme 3. Reagents and conditions; a) TsOH, L-leu-OCH₃, HOBT, DCC, Et₃N, THF, 0° C, 75 % b) LiOH, THF/H₂O(2/1), 0° C, c) 10% Pd/C, H₂, MeOH, 70-80°C, 83%.

1) to give acid 19 in quantitative yield. The obtained 19 was deprotected with H_2 -Pd/C in MeOH at 70-80 °C to give desired peptide 20 with 83% yield (Scheme 3).

In conclusion, we reported the result of regioselective reaction of epoxide ring opening by nucleophiles attack. According to survey, regioselective ring opening of epoxide was completed more easily under the conditions of Gilman reagents than Grignard reagents. And also, we synthesized dipeptide 20 which expecting as a protease inhibitor.

Experiments

General. All solvents were purified before use with standard drying procedures, unless otherwise specified. Reactions were monitored by TLC using Merck silica gel 60 F-254 plates with UV indicator or/and visualized with phosphomolybdic acid (10% solution in EtOH). All the organic layers were dried over Na₂SO₄ before concentration in vacuo. Column chromatography was carried out using 230-400 mesh silica gel. Elemental analysis or C. H and N are in agreement with the theoretical data, except for compounds containing halogens, where combustion analysis could not be performed. Melting points were measured on Thomas-Hoover melting point apparatus but the temperatures were not corrected. ¹H- and ¹³C-NMR experiments were conducted on Bruker AW-500 spectrometer. Optical rotation were measured on a Jasco DIP-1000 polarimeter and $\lceil \alpha \rceil_D$ values are given in units of 10^{-1} degcm²g⁻¹.

Preparation of methyl 3,4;5,6-di-*O*-isopropylidene-2-*O*-methanesulfonyl-*D*-gluconate (1) and methyl 3,4;5,6-di-*O*-isopropylidene-2-*O*-methanesulfonyl-*D*-gluconate (2) were prepared according to ref.¹³ and physical and spectral dates were correlated well with previously reported.

Methyl 3,4;5,6-di-*O*-isopropylidene-2-*O*-methanesulfonyl-**D-glucitol** (3). To a solution of compound 2 (2.22 g. 6.03) mmol) in MeOH (30 mL) was added portionwise NaBH₄ (0.68 g. 18.1 mmol) at 0 °C for 3 min and stirred for 11 h and then quenched with water (5 mL). The reaction mixture was extracted with EtOAc (3×30 mL) and the organic layers were evaporated in vacuo. The combined organic extracts were dried with Na₂SO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 9:1, v/v) to afford pure 3 (2.03 g, 98%) as an oil. $[\alpha]_D = -6.3$ (c 2.20, CHCl₃); IR (KRS-5) 3490, 2980, 2970. 2900, 1370, 1360, 1300, 1290, 1280, 1100, 990 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.35 (s, 3H), 1.39 (s, 3H), 1.41 (s, 3H). 1.44 (s, 3H), 2.64-2.67 (t, -OH, J = 6.7 Hz), 3.14 (s, 3H), 3.92-3.97 (m, 4H), 4.04-4.07 (m, 1H), 4.18-4.24 (m, 2H), 4.82 (q. 1H, J = 4.4 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 110.6. 110.3, 81.9, 79.9, 77.8, 76.8, 68.1, 63.0, 38.9, 30.9, 27.2, 26.6,

26.3. 25.2. Anal. Calcd for $C_{13}H_{24}O_8S_1$; C, 45.87; H, 7.11. Found : C, 45. 86 H, 7.10.

1,2-Anhydro-1,2-epoxy-3,4;5,6-O-diisopropylidene-D-glucose (4). To a stirred solution of compound 3 (4.4 g. 12.9 mmol) in MeOH (50 mL) was added portionwise Na metal (0.45 g. 19.4 mmol) at 0 °C. After stirring 2 h at rt., water (10 mL) was slowly added and extracted with EtOAc (3×40 mL). The combined organic extracts were washed with water and brine and dried over anhydrous MgSO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 5:1, v/v) to afford pure 3 (2.76 g. 87%) as an oil. $[\alpha]_D = -4.3$ (c 2.00, CHCl₃); IR (KRS-5) 2980, 2970, 2970, 2350, 1370, 1310, 1290, 1100, 920 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.37 (s, 3H), 1.42 (s, 3H), 1.43 (s, 3H), 1.45 (s. 3H), 2.84-2.85 (m. 2H), 3.22 (dd, 1H. J = 3.5, 6.8 Hz). 3.85 (t. 1H, J = 7.29 Hz), 3.98 (dd, 1H, J = 4.9, 8.1 Hz), 4.07-4.16 (m, 3H): ¹³C NMR (125 MHz. CDCl₃) δ 110.4, 110.1, 79.2, 79.1, 77.1, 67.8, 52.3, 44.6, 31.3, 27.4, 27.1, 27.0, 25.6. Anal. Calcd for C₁₂H₂₀O₅: C, 59.00; H, 8.25. Found: C, 58.98; H. 8.24.

General preparation of epoxy 5a, 5b and 5c: Representative procedure for the preparation of 1-deoxy-1-cyclohexyl-3,4;5,6-O-diisopropylidene-D-mannose (5a). To a solution of dried CuI (1.37 g. 7.2 mmol, 99.99%) in ether (20 mL) was slowly added dropwise for 5 min cyclohexylmagnesium chloride (4 mL. 8.0 mmol) at -20 °C. After stirring for 5 min, compound 4 (0.488 g. 2.00 mmol) dissolved in ether (10 mL) added for 5 min via cannula and stirred for 30 min. To the reaction mixture added saturated NH₄Cl solution (5 mL) and stirred additional 20 min. The reaction quenched with water (30 mL) and extracted with EtOAc (30 mL×3). The organic layer washed with water (30 mL×2) and brine and dried with anhydrous MgSO₄. Filtration and removal of the solvent gave a dark yellow oil which was further purified by flash column chromatography (hexane/EtOAc, 10/1, v/v) to afford pure 5a (1.67 g, 70%) as white solid.

mp 42-44 °C. [α]_D = -3.6 (c 3.00, CHCl₃): IR (KBr) 3470, 2980, 2950, 2920, 2890, 2850, 1440, 1350, 1240, 1220, 1140, 1070, 860 cm⁻¹; ¹H NMR (500MHz, CDCl₃) δ 0.85-0.88 (m, 1H), 0.98-1.03 (m, 1H), 1.14-1.19 (m, 1H), 1.23-1.30 (m, 1H), 1.36 (s, 6H), 1.37 (s, 3H), 1.39-1.42 (m, 1H), 1.44 (s, 3H), 1.50-1.59 (m, 2H), 1.63-1.71 (m, 5H), 1.84-1.89 (m, 1H), 3.11 (s, -OH), 3.71-3.76 (m, 3H), 3.98 (dd, 1H, J = 5.7, 8.44 Hz), 4.14-4.07 (m, 1H), 4.20 (dd, 1H, J = 5.92, 8.7 Hz): ¹³C NMR (125MHz, CDCl₃) δ 110.2, 109.1, 84.1, 80.8, 77.3, 76.7, 69.7, 68.1, 34.7, 33.6, 32.5, 26.9, 27.0, 26.7, 26.5, 26.5, 26.2, 25.2, Anal. Calcd for C₁₈H₃₂O₅: C, 65.82; H, 9.82. Found: C, 65.80; H, 9.81.

1-Deoxy-1-isopropyl-3,4;5,6-O-diisopropylidene-D-man-

nose (5b). According to the general procedure with isopropylmagnesium chloride (9 mL. 18.1 mmol) and compound 4 (2.95 g. 12.1 mmol) in THF afforded pure compound 5b (2.81 g. 80%) as a colorless oil. [α]_D = -3.0 (c 3.00, CHCl₃); IR (KRS-5) 3470, 2980, 2950, 2930, 2900, 2870, 1450, 1370, 1240, 1210, 1150, 1070, 850 cm⁻¹; ¹H NMR (500 MHz. CDCl₃) δ 0.94 (dd. 6H, J = 6.6, 15.2 Hz), 1.34 (s. 3H), 1.36 (s. 3H), 1.38 (s. 3H), 1.41 (s. 3H), 1.42-1.47 (m. 2H), 1.81-1.90 (m. 1H), 3.16 (s. -OH), 3.71-3.75 (m. 3H), 3.97-4.00 (dd. 1H, J = 5.6, 8.5 Hz), 4.05-4.06 (m. 1H), 4.19 (dd. 1H, J = 6.1, 8.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 110.5, 109.5, 84.4, 81.1, 77.0, 70.6, 68.4, 43.0, 27.3, 27.2, 26.8, 25.6, 24.5, 24.3, 21.9, Anal. Calcd for C₁₅H₂₈O₅: C, 62.47; H, 9.79. Found: C, 62.45; H, 9.78.

1-Deoxy-1-methyl-3,4;5,6-*O***-diisopropylidene-***D***-mannose** (**5c**). According to the general procedure with methylmagnesium bromide (5.18 mL, 15.5 mmol) and compound **4** (2.53 g. 10.4 mmol) in Et₂O afforded pure compound **5c** (2.95 g. 80%) as a colorless oil. [α]_D = -2.23 (c 2.00. CHCl₃): IR (KRS-5) 3480, 2980, 2930, 2880, 1370, 1240, 1210, 1150, 1060, 840 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.02 (t, 3H, J =7.3 Hz), 1.23 (s, 3H), 1.24 (s, 3H), 1.24 (s, 3H), 1.25 (s, 3H), 1.51-1.69 (m, 2H), 1.73-1.80 (m, 1H), 3.39 (m, -OH), 3.54-3.58 (m, 1H), 3.70-3.74 (m, 2H), 4.01 (dd, 1H, J = 3.0, 5.5 Hz), 4.05-4.09 (m, 1H), 4.20 (dd, 1H, J = 6.0, 8.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 110.20, 109.12, 83.12, 81.11, 76.58, 73.35, 68.07, 26.91, 26.80, 26.44, 26.40, 25.18, 9.41. Anal. Calcd for C₁₃H₂₄O₅: C, 59.98; H, 9.29. Found: C, 59.99; H, 9.28.

General preparation of 7a, 7b and 7c: Representative procedure for the preparation of 1-cyclohexyl-1-deoxy-3,4:5,6-O-diisopropylidene-2-O-methansulfonyl-D-mannose (7a). To a solution of 5a (2.0 g. 6.09 mmol) in CH₂Cl₂ (20 mL) was added dropwise Et₃N (0.2 g. 1.83 mmol) for 5 min at 0 °C. After stirring for 5 min, MsCl (0.76 g. 6.70 mmol) was slowly added to the mixture. The reaction mixture stirred for 30 min at rt. and then was quenched with saturated aqueous NaHCO₃ (20 mL). The reaction mixture extracted with EtOAc (3×30 mL) and the organic layers were evaporated in vacuo. The combined organic extracts were dried with Na₂SO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 10:1, v/v) to afford pure 7a (2.43 g. 98%) as an oil. 7a: $[\alpha]_D = -5.69$ (c 3.00, CHCl₃): IR (KRS-5) 2980, 2930, 2880, 1450, 1340, 1210, 1160, 1060, 910, 840 cm⁻¹: ¹H NMR (500MHz, CDCl₃) δ 0.81-0.88 (m, 1H), 0.97-1.04 (m, 1H), 1.12-1.32 (m, 4H), 1.34 (s, 3H), 1.37 (s, 3H), 1.41 (s. 3H), 1.41 (s. 3H), 1.45-1.56 (m. 2H), 1.64-1.87 (m. 6H), 3.06 (s. 3H), 3.74-3.80 (m. 1H), 3.93 (dd. 1H, J = 5.6, 8.6Hz), 4.03-4.07 (m, 1H), 4.14-4.30 (m, 1H), 4.33-4.38 (m, 1H), 5.01-5.04 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 110.0. 109.9, 81.7, 79.5, 78.0, 77.1, 68.0, 38.8, 37.3, 33.8, 33.3, 32.4, 27.1, 25.0, 26.7, 26.4, 26.1, 25.9, 25.2. Anal. Calcd for C₁₉H₃₄O₇S; C, 56.13; H, 8.43, Found; C, 56.12; H, 8.43

7b: Yield: 99 %; [α]_D= +13.62 (c 4.00, CHCl₃); IR (KRS-5) 2980, 2870, 1360, 1460, 1210, 1170, 1070, 980, 920 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.96 (dd. 6H, J = 6.4, 11.8 Hz), 1.35 (s. 3H), 1.38 (s. 3H), 1.42 (s. 3H), 1.42 (s. 3H), 1.14-1.49 (m. 1H), 1.80-1.85 (m. 2H), 3.08 (s. 3H), 3.76-3.78 (dd. 1H, J = 7.3, 8.5 Hz), 3.95 (dd. 1H, J = 5.4, 8.6 Hz), 4.04-4.08 (m.

1H). 4.17 (dd, 1H, J = 6.2, 8.6 Hz). 4.25(dd, 1H, J = 2.4, 7.2 Hz), 4.99-5.03 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 110.0, 110.0, 81.7, 80.1, 78.0, 77.1, 68.0, 38.8, 38.8, 27.0, 27.0, 26.7, 25.2, 24.0, 23.2, 21.6, Anal. Calcd for $C_{16}H_{30}O_7S$; C. 52.44; H. 8.25. Found: C, 52.45; H, 8.26.

7c: Yield: 98 %: $[\alpha]_D = -5.65$ (c 2.00, CHCl₃); IR (KRS-5) 2990, 2940, 2890, 1460, 1360, 1240, 1220, 1180, 1070, 930, 850 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.02 (t. 3H, J = 7.8 Hz), 1.31 (s. 3H), 1.34 (s. 3H), 1.38 (s. 6H), 1.75-1.89 (m. 3H), 3.04 (s. 3H), 3.83 (dd, 1H, J = 7.0, 8.0 Hz), 3.91 (dd, 1H, J = 5.5, 8.5 Hz), 4.02-4.06 (m. 1H), 4.11 (dd, 1H, J = 6.0, 8.5 Hz), 4.17 (dd, 1H, J = 3.5, 7.0 Hz), 4.76-4.79 (m. 1H); ¹³C NMR (125 MHz, CDCl₃); δ 110.4, 110.2, 84.0, 81.1, 78.6, 77.4, 68.0, 39.0, 27.5, 27.5, 26.9, 25.6, 23.7, 10.1, Anal. Calcd for $C_{14}H_{26}O_7S$; C, 49.69; H, 7.74, Found: C, 48.70; H, 7.76.

General preparation of 8a, 8b and 8c: Representative procedure for the preparation of 2-azido-1-cyclohexyl-1,2-dideoxy-3,4;5,6-O-diisopropylidene-D-glucose (8a). To a solution of 7a (2.0 g, 6.39 mmol) in N_iN -dimethyl formamide (20 mL) was added NaN₃ (3.20 g. 32 mmol, 5 times excess) at rt. The reaction mixture stirred for 10 h at 80 °C and then cooled down rt, and quenched with water (30 mL). The reaction mixture extracted with EtOAc (3×30 mL) and the organic layers were evaporated in vacuo. The combined organic extracts were dried with Na₂SO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 10:1, v/v) to afford pure 8a (1.97 g, 87%) as an oil. $[\alpha]_D = -6.69$ (c 2.00, CHCl₃): IR (KRS-5) 2990, 2920, 2850, 2360, 2110 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.89- 0.92 (m, 1H), 0.97-1.00 (m, 1H), 1.15-1.20 (m, 1H), 1.23-1.31 (m, 2H). 1.32 (s, 3H), 1.37 (s, 3H), 1.39 (s, 3H), 1.47 (s, 3H), 1.48-1.52 (m, 2H). 1.66-1.85 (m, 6H). 3.28-3.32 (m, 1H), 3.91-4.03 (m, 4H), 3.13 (dd, 1H, J = 5.64, 8.33 Hz); ¹³C NMR (125MHz, CDCl₃) & 110.1, 109.8, 83.3, 78.0, 77.4, 67.9, 58.2, 38.5, 34.5, 33.8. 32.5. 27.2. 26.7. 26.5. 26.3. 26.1. 25.3. Anal. Calcd for C₁₈H₃₁N₃O₄: C, 61.17; H, 8.84. Found: C, 61.18; H, 8.85.

8b: Yield: 88 %: $[\alpha]_D$ = -25.49 (c 4.00, CHCl₃): IR (KRS-5) 2990, 2960, 2940, 2870, 2110, 1470, 1370, 1250, 1220, 1070, 850 cm⁻¹: ¹H NMR (500MHz. CDCl₃) δ 0.96 (d, 3H. J = 6.5 Hz), 0.99 (d, 3H, J = 6.44 Hz), 1.32 (s. 3H). 1.37 (s. 3H). 1.39 (s. 3H). 1.47 (s. 3H). 1.47-1.49 (m. 1H). 1.82-1.87 (m. 2H). 3.28-3.28 (m. 4H). 4.13 (dd. 1H, J = 5.5, 8.2 Hz): ¹³C NMR (500MHz, CDCl₃) δ 110.1, 109.8, 83.1, 78.0, 77.5, 68.0, 58.9, 39.8, 27.2, 26.7, 26.7, 25.3, 25.1, 23.0, 21.8, Anal. Calcd for C_{1.5}H₂₇N₃O₄: C, 57.4; H, 8.68. Found: C, 57.48; H, 8.67.

8c: Yield: 85 %; $[\alpha]_D = -11.34$ (c 3.00, CHCl₃); IR (KRS-5) 2990, 2930, 2880, 2100, 1380, 1250, 1220, 1070, 850 cm⁻¹; ¹H NMR (500MHz, CDCl₃) δ 1.09 (t, 3H, J = 7.4 Hz), 1.33 (s, 3H), 1.37 (s, 3H), 1.40 (s, 3H), 1.46 (s, 3H), 1.74-1.79 (m, 1H), 1.86-1.92 (m, 1H), 3.13-3.14 (m, 1H), 3.95-4.12 (m, 4H), 4.13-4.15 (dd, 1H, J = 5.7, 8.3 Hz); ¹³C NMR (125MHz, CDCl₃) δ 110.0, 109.8, 82.5, 82.0, 79.0, 78.0, 77.4, 68.0, 67.6, 65.6, 62.6, 27.5, 27.2, 26.8, 26.7, 26.5, 25.3, 24.4, 23.3, 11.1, 11.0, Anal. Calcd for C₁₃H₂₃N₃O₄; C, 54.72; H, 8.12. Found: C, 54.73; H, 8.13.

General preparation of 9a, 9b and 9c: Representative procedure for the preparation of 2-amino-1,2-dideoxy-1-cyclohexyl-3,4;5,6-O-diiso-propylidene-*D*-glucose (9a). To a solution of

8a (1.4 g, 4.25 mmol) in MeOH (20 mL) was added catalytic amount of 10% Pd/C and the reaction mixture stirred for 30 h at rt. Reaction mixture filtered by glass funnel which was padded with celite. The solvent was evaporated in vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 1:2, v/v) to afford pure 9a (1.32 g, 95%) as an oil. 9a: $[\alpha]_D = -13.26$ (c 2.00, CHCl₃); IR (KRS-5) 3390, 3330, 2990, 2920, 2850, 1370, 1240, 1210, 1070, 850 cm⁻¹, ¹H NMR (500MHz, CDCl₃) δ 0.83-0.86 (m, 1H), 0.95-0.97 (m, 1H) 1.14-1.19 (m, 1H), 1.23-1.29 (m, 5H), 1.34-1.40 (m, 1H), 1.34 (s, 3H), 1.36 (s, 3H), 1.40 (s, 3H), 1.41 (s, 3H), 1.46-1.52 (m, 1H), 1.64-1.71 (m, 4H), 1.77-1.89 (m, 1H), 2.90-2.94 (m, 1H), 3.80 (dd, 1H, J = 3.85, 6.79 Hz), 3.85 (dd, 1H, J = 6.8, 8.0 Hz), 3.96 (dd, 1H, J = 5.1, 8.4 Hz), 4.03-4.07 (m, 1H), 4.13 (dd, 1H, J = 6.16, 8.38 Hz); ¹³C NMR (125MHz, CDCl₃) δ 109.6. 109.2, 84.4, 78.4, 77.4, 67.8, 49.3, 43.2, 34.4, 34.2, 32.6, 27.5, 27.4, 26.7, 26.7, 26.4, 26.2, 25.3. Anal. Calcd for C₁₈H₃₃NO₄: C. 66.05; H. 10.09; N. 4.28. Found: C. 66.04; H. 10.07; N. 4.25.

9b: $[\alpha]_D = -19.4$ (c 2.00, CHCl₃); IR (KRS-5) 3480, 3400, 3060, 2960, 2930, 2850, 2340, 1710, 1610, 1450, 1300, 920, 730 cm⁻¹; ¹H NMR (500MHz, CDCl₃) δ 0.90 (d, 3H, J = 6.54 Hz), 0.94 (d, 3H, J = 6.62 Hz), 1.29-1.40 (m, 5H), 1.34 (s, 3H), 1.36 (s, 3H), 1.40 (s, 6H), 1.77-1.83 (m, 1H), 2.88-2.91 (m, 1H), 3.82 (dd, 1H, J = 3.5, 6.9 Hz), 3.88 (dd, 1H, J = 6.9, 7.9 Hz), 3.96 (dd, 1H, J = 5.05, 8.4 Hz), 4.03-4.07 (m, 1H), 4.13 (dd, 1H, J = 6.1, 8.4 Hz); ¹³C NMR (125MHz, CDCl₃) δ 109.6, 109.2, 84.1, 78.3, 77.4, 67.8, 49.9, 44.8, 27.4, 27.3, 26.7, 25.3, 24.7, 23.5, 21.8, Anal. Calcd for C₁₅H₂₉NO₄ : C, 62.72; H, 10.10; N, 4.87. Found: C, 62.71; H, 10.08; N, 4.85.

9c: $[\alpha]_D = +8.28$ (c 2.00, CHCl₃); IR (KRS-5) 3380, 3390, 2980, 2930, 2880, 2360, 1460, 1380, 1250, 1220, 1160, 1070, 850 cm⁻¹; ¹H NMR (500MHz, CDCl₃) δ 1.00 (t, 3H, J = 7.4 Hz), 1.27 (s, 2H), 1.34 (s, 3H), 1.36 (s, 3H), 1.40 (s, 3H), 1.34-1.39 (m, 1H), 1.58-1.63 (m, 1H), 2.70-2.73 (m, 1H), 3.85-3.91 (m, 2H), 3.96 (dd, 1H, J = 5.20, 8.35 Hz), 4.03-4.07 (m, 1H), 4.13 (dd, 1H, J = 6.2, 8.3 Hz); ¹³C NMR (125MHz, CDCl₃) δ 110.0, 109.4, 83.9, 78.6, 68.1, 53.7, 31.2, 28.7, 27.7, 27.6, 27.0, 25.7, 11.2, Anal. Calcd for C₁₃H₂₅NO₄ ; C, 60.23; H, 9.65; N, 5.41. Found: C, 60.22; H, 9.66; N, 5.44.

General preparation of 10a, 10b and 10c: Representative procedure for the preparation of 1-cyclohexyl-1,2-dideoxy-3,4;5,6-O-diisopropylidene-2-[(9-phenylfluoren-9-yl)amino)-D-glucose (10a). To a solution of 9a (0.9 g, 3.05 mmol) in CH₂Cl₂ (10 mL) was added Pb(NO₃)₂ (0.94 g, 4.58 mmol). 9-bromo-9-phenylfluorene (1.47 g, 4.58 mmol) and Et₃N (0.93 g, 9.16 mmol) at rt. The reaction mixture stirred for 30 min at rt. and quenched with water (30 mL). The reaction mixture extracted with CH₂Cl₂ (3 × 20 mL) and the organic layers were evaporated in vacuo. The combined organic extracts were dried with Na₂SO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 10:1, v/v) to afford pure 10a (1.51 g, 87%) as an oil.

10a: $[\alpha]_D$ = +7.44 (c 2.00, CHCl₃); IR (KRS-5) 3430, 3330, 3060, 2990, 2920, 2850, 1720, 1450, 1370, 1250, 1210, 1060, 850 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.28-0.33 (m. 1H), 0.39-0.45 (m, 1H), 0.88-1.17 (m, 7H), 1.19-1.24 (m, 5H), 1.25

(s, 3H), 1.13 (s. 3H), 1.14-1.44 (m. 4H), 1.50-1.55 (m. 3H), 2.34-2.45 (m. 1H), 2.63 (d. 1H, J = 8.7 Hz), 3.64-3.69 (m. 2H), 3.90-4.03 (m. 3H), 7.07-7.21 (m. 5H), 7.28-7.39 (m, 4H), 7.43-7.45 (m. 2H), 7.67 (d. 2H, J = 7.5 Hz); 13 C NMR (125MHz, CDCl₃) δ 151.0, 150.5, 145.9, 140.6, 140.5, 128.1, 128.1, 127.7, 127.5, 126.9, 126.5, 126.3, 126.1, 125.9, 125.8, 120.0, 119.8, 109.3, 108.4, 80.9, 77.3, 76.8, 72.4, 67.5, 49.3, 41.5, 33.7, 33.3, 32.8, 30.9, 27.3, 26.8, 26.6, 26.4, 26.2, 26.1, 25.3, 13.8, Anal. Calcd for $C_{36}H_{45}NO_4$: C, 77.80; H, 8.16; N, 2.52, Found: C, 77.83; H, 8.13; N, 2.55.

10b: Yield: 85%: $[\alpha]_D = +3.84$ (c 2.00, CHCl₃): IR (KRS-5) 3330, 3060, 2980, 2930, 2870, 1740, 1450, 1380, 1250, 1210, 1160, 1070, 850, 740 cm⁻¹; ¹H NMR (500MHz, CDCl₃) δ 0.38 (d, 3H, J = 6.5 Hz), 0.45 (d, 3H, J = 6.5 Hz), 0.83-0.87 (m, 1H), 1.17-1.24 (m, 1H), 1.22 (s, 3H), 1.26 (s, 3H), 1.30 (s, 3H), 1.34-1.44 (m, 1H), 1.46 (s, 3H), 2.32 (s, 1H), 2.56 (s, 1H), 3.67-3.71 (m, 1H), 3.88-3.92 (m, 1H), 4.01-4.03 (m, 1H), 7.16-7.35 (m, 9H), 7.45 (d, 2H, J = 7.0 Hz), 7.66 (d, 2H, J = 7.4 Hz); ¹³C NMR (125MHz, CDCl₃) δ 151.2, 150.4, 146.0, 140.6, 140.5, 128.5, 128.2, 128.1, 127.7, 127.6, 126.9, 126.3, 125.9, 125.4, 120.1, 119.9, 119.8, 109.3, 108.5, 80.9, 77.5, 77.0, 72.4, 67.5, 50.2, 43.1, 27.3, 26.8, 26.4, 25.3, 24.4, 22.9, 21.7, Anal. Calcd for C₃₃H₄₁NO₄ : C, 76.86; H, 8.01; N, 2.72 . Found: C, 76.83; H, 8.03; N, 2.75.

10c: Yield: 89%; $[\alpha]_D = +8.52$ (c 2.00. CHCl₃); IR (KRS-5) 3420, 3330, 3040, 2987, 2920, 2850, 1715, 1440, 1350, 1250, 1210, 1060, 870 cm⁻¹; ¹H NMR (500MHz, CDCl₃) δ 0.64 (t, 3H. J = 7.4 Hz), 1.03-1.07 (m, 1H), 1.14-1.17 (m, 1H), 1.19 (s. 3H), 1.27 (s. 3H), 1.32 (s. 3H), 1.39 (s. 3H), 2.25 (s. 1H), 2.27 (s. 1H), 3.68 (dd. 1H. J = 2.7, 7.4 Hz), 3.75 (dd. 1H, J = 6.9, 8.1 Hz), 3.89-3.93 (m, 1H), 3.95-3.98 (m, 1H), 4.01-4.04 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 148.5, 148.4, 143.3, 141.6, 140.2, 129.0, 128.9, 128.8, 128.1, 128.0, 127.6, 126.2, 125.9, 125.3, 120.5, 120.2, 107.7, 81.5, 76.1, 73.0, 72.0, 64.4, 54.1, 26.8, 26.3, 23.3, 11.5, Anal. Calcd for C₃₁H₃:NO₄: C, 76.36 H, 7.65; N, 2.87, Found: C, 76.37; H, 7.63; N, 2.87.

General preparation of 11a, 11b and 11c: Representative procedure for the preparation of 1-cyclohexyl-1,2-dideoxy-3,4-O-isopropylidene-2-[(9-phenylfluoren-9-yl)amino]-D-lyxitol (11a). To a solution of 10a (1.17 g. 2.11 mmol) in CH₂Cl₂ (5 mL) was added acetic acid (70%, 35 mL) at rt. The reaction mixture stirred for 24 h at rt. and then added water (30 mL). The reaction mixture extracted with CH₂Cl₂ (3 × 30 mL). The combined organic extracts were dried with Na₂SO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 10:1, v/v) to afford pure 11a (0.98 g, 90%) as an oil.

11a: $[\alpha]_D = +29.26$ (c 2.00, CHCl₃); IR (KRS-5) 3440, 3290, 3060, 2980, 2930, 2850, 1720, 1450, 1370, 1250, 1070, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.38-0.41 (m. 1H), 0.75-0.78 (m, 1H), 0.88-0.92 (m, 1H), 0.94 (s, 3H), 0.97-1.03 (m, 2H), 1.04-1.16 (m, 3H), 1.21 (s. 3H), 1.24-1.27 (m, 1H), 1.36-1.40 (m, 1H), 1.42-1.46 (m, 2H), 1.55-1.63 (m, 2H), 2.03 (s, 1H), 2.54-2.57 (m. 1H), 3.12 (dd, 1H, J = 3.2, 11.7 Hz), 3.47-3.50 (m, 1H), 3.67-3.74 (m, 2H), 3.35 (dd, 1H, J = 4.0, 11.2 Hz), 7.19-7.30 (m, 7H), 7.31-7.36 (m, 2H), 7.39-7.42 (m. 1H), 7.46 (d, 1H, J = 7.5 Hz), 7.74 (d, 1H, J = 7.6 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 148.6, 148.5, 143.2, 141.6, 140.1,

129.0, 128.9, 128.8, 128.2, 128.1, 127.6, 126.3, 125.9, 124.9, 120.5, 120.2, 107.7, 81.4, 76.0, 73.1, 72.2, 64.8, 60.4, 49.1, 38.9, 34.5, 33.1, 32.2, 26.8, 26.4, 26.3, 25.9, 14.2. Anal. Calcd for $C_{33}H_{41}NO_4$: C, 76.86 H, 8.01; N, 2.72. Found: C, 76.84; H, 8.00; N, 2.70.

11b: Yield: 91%: $[\alpha]_D = +24.52 \ (c\ 2.00, \text{CHCl}_3)$; IR (KRS-5) 3410, 3290, 3060, 2980, 2950, 2930, 2870, 2780, 2250, 1450, 1370, 1240, 1070, 910, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.33 (d, 1H, J = 6.3 Hz), 0.73 (d, 1H, J = 6.5 Hz), 0.96 (s, 3H), 1.09-1.19 (m, 2H), 1.23-1.27 (m, 4H), 1.33-1.39 (m, 1H), 1.46-1.49 (m, 1H), 2.03 (s, 1H), 2.50-2.53 (m, 1H), 3.18 (dd, 1H, J = 3.2, 8.5 Hz), 3.48-3.52 (m, 1H), 3.70-3.75 (m, 1H), 3.85 (dd, 1H, J = 4.0, 11.2 Hz), 7.11-7.31 (m, 8H), 7.34-7.36 (m, 2H), 7.39-7.42 (m, 1H), 7.45-7.49 (m, 1H), 7.70-7.74 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 148.7, 148.5, 143.2, 141.6, 140.2, 129.0, 128.9, 128.7, 128.3, 128.0, 127.6, 126.4, 125.9, 125.0, 120.5, 120.2, 107.7, 81.5, 76.0, 73.0, 72.3, 64.8, 50.0, 40.6, 26.8, 26.3, 24.0, 23.7, 21.6, Anal. Calcd for C₃₀H₃₂NO₄: C, 75.76; H, 7.84; N, 2.94. Found: C, 75.73; H, 7.83; N, 2.95.

11c: Yield: 89%; $[\alpha]_D = +25.22$ (c 2.00, CHCl₃); IR (KRS-5) 3430, 3310, 3060, 2980, 2930, 2870, 1730, 1600, 1450, 1380, 1250, 1070 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.73 (t, 3H, J = 7.5 Hz), 0.96 (s, 3H), 1.21-1.27 (m, 2H), 1.22 (s, 3H), 1.66 -1.71 (m, 1H), 2.03 (s, 1H), 2.37 - 2.40 (m, 1H), 3.15 (dd, 1H, J = 3.3, 8.6 Hz), 3.48-3.50 (m, 1H), 3.69-3.73 (m, 2H), 3.85 (dd, 1H, J = 3.9, 11.1 Hz), 7.19- 7.31 (m, 7H), 7.33-7.36 (m, 1H), 7.39-7.42 (m, 1H), 7.47 (d, 1H, J = 7.6 Hz), 7.71 (dd, 2H, J = 7.5, 17.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 148.5, 148.4, 143.3, 141.6, 140.2, 129.0, 128.9, 128.8, 128.1, 128.0, 127.6, 126.2, 125.9, 125.3, 120.3, 120.2, 107.7, 81.5, 76.1, 73.0, 72.0, 64.4, 54.1, 26.8, 26.3, 23.3, 11.5, Anal. Calcd for C₂₈H₃₃NO₄: C, 75.14; H, 7.43; N, 3.13, Found: C, 75.12; H, 7.41; N, 3.10.

General preparation of 12a, 12b and 12c: Representative procedure for the preparation of 1-cyclohexyl-1,2-dideoxy-3,4-O-isopropylidene-2-[(9-phenylfluoren-9-yl)amino]-D-xylitol (12a). To a solution of 11a (0.79 g, 1.53 mmol) in $H_2\text{O/EtOH} = (1:2, 30 \text{ mL})$ was added $NaIO_4$ (0.49g, 2.27 mmol) at rt. The reaction mixture stirred for 2 h at rt. and then added $NaBH_4$ (7.45mg, 1.97 mmol) and stirred for 15 min. EtOH in the reaction bottle was evaporated and the reaction mixture extracted with CH_2Cl_2 (3 \times 30 mL). The combined organic extracts were dried with Na_2SO_4 and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 3:1, v/v) to afford pure 12a (0.67 g, 90%) as an oil.

12a: $[\alpha]_D = +18.51$ (c 2.00, CHCl₃); IR (KRS-5) 3440, 3060, 3030, 2990, 2980, 2850, 1590, 1370, 1220, 1150, 1050, 930, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.38-0.45 (m, 1H), 0.60-.68 (m, 1H), 0.79-0.90 (m, 2H), 0.96-1.03 (m, 2H) 1.04 (s, 3H), 1.00-1.12 (m, 3H), 1.24-1.29 (m, 1H), 1.28 (s, 3H), 1.30-1.58 (m, 2H), 1.55-1.61 (m, 1H), 2.30 (s, 1H), 2.46-2.48 (m, 1H), 3.15 (dd, 1H, J = 3.1, 8.6 Hz), 3.48 (dd, 1H, J = 8.3, 10.7 Hz), 3.71-3.74 (m, 1H), 3.94-3.98 (m, 1H), 7.22-7.48 (m, 1H), 7.68-7.73 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.3, 148.9, 143.8, 141.5, 140.1, 128.8, 128.7, 128.6, 128.1, 127.9, 127.5, 126.3, 126.0, 125.1, 120.4, 120.2, 107.6, 81.5,

75.7. 73.0. 63.0, 49.0. 39.5, 34.0. 33.3. 32.6, 27.0. 26.5, 26.4. 26.3, 25.9. Anal. Calcd for $C_{32}H_{39}NO_3$: C. 79.14 H. 8.09 N. 2.88. Found: C, 79.12 H, 8.07 N. 2.85.

12b: Yield: 79%: $[α]_D = +20.32$ (c 2.00, CHCl₃); IR (KRS-5) 3460, 3290, 3060, 2980, 2950, 2870, 1450, 1370, 1240, 1170, 1070, 910, 730 cm⁻¹: ¹H NMR (500 MHz, CDCl₃) δ 0.43 (d, 3H, J = 6.1 Hz), 0.62 (d, 3H, J = 6.3 Hz), 1.07-1.11 (m, 1H), 1.17 (s, 3H), 1.37 (s, 3H), 1.39-1.49 (m, 2H), 2.42 -2.45 (m, 1H), 3.29 (dd, 1H, J = 2.9, 8.6 Hz), 3.54 (dd, 1H, J = 7.6, 10.9 Hz), 3.70 (dd, 1H, J = 4.2, 10.9 Hz), 4.04-4.09 (m, 1H), 7.23-7.45 (m, 11H), 7.72-7.77 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.5, 148.9, 144.0, 141.4, 140.2, 128.8, 128.7, 128.5, 128.1, 127.8, 127.4, 126.2, 126.0, 125.2, 120.3, 120.1, 107.6, 81.0, 75.9, 72.9, 62.8, 49.6, 41.3, 27.0, 26.6, 24.1, 22.9, 22.1, Anal. Calcd for C₂₉H₃₅NO₃: C, 78.17 H, 7.92 N, 3.14. Found: C, 78.13 H, 7.93 N, 3.15.

12c: Yield: 78%: $[α]_D = +35.28$ (*c* 2.00, CHCl₃); IR (KRS-5) 3460, 3340, 3230, 3060, 2980, 2930, 2870, 1740, 1450, 1370, 1240, 1170, 1050 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.66 (t, 3H, J = 7.5 Hz), 1.11 (s. 3H), 1.12-1.16 (m, 1H), 1.32 (s, 3H), 1.44-1.50 (m, 1H), 2.26-2.28 (m, 1H), 2.29 (s. 1H), 3.29 (dd. 1H, J = 3.38, 8.58 Hz), 3.51 (dd. 1H, J = 7.14, 11.0 Hz), 3.63 (dd, 1H, J = 4.2, 10.9 Hz), 3.97-4.01 (m, 1H), 7.17-7.25 (m, 6H), 7.30-7.37 (m, 5H), 7.66-7.70 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.5, 149.0, 144.2, 141.1, 140.2, 128.7, 128.6, 128.5, 127.8, 127.4, 126.1, 126.0, 125.4, 120.2, 120.1, 107.7, 80.8, 76.3, 72.9, 62.7, 53.9, 27.0, 26.6, 24.3, 10.9, Anal. Calcd for C₂₇H₃₁NO₃ : C, 77.67 H, 7.48 N, 3.35, Found: C, 77.63; H, 7.49 N, 3.35.

General preparation of 13a, 13b and 13c: Representative procedure for the preparation of 1-cyclohexyl-1,2-dideoxy-3,4-O-isopropylidene-5-O-mesyl-2-[(9-phenylfluoren-9-yl)amino]-D-xylitol (13a). To a solution of 12a (0.73 g. 1.51 mmol) in CH₂Cl₂ (30 mL) was added Et₃N (0.32 mL, 2.27 mmol) at 0 °C. The reaction mixture stirred for 20 min and added MsCl (0.15 mL, 1.97 mmol) and stirred for 30 min. The reaction quenched by addition of NaHCO₃ solution (10%, 10 mL) and the reaction mixture extracted with CH₂Cl₂ (3 × 30 mL). The combined organic extracts were dried with anhydrous MgSO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (CH₂Cl₂) to afford pure 13a (0.84 g, 99%) as an oil.

13a: $[\alpha]_D$ = +11.15 (*c* 2.00, CHCl₃); IR (KRS-5) 3350, 2990, 2920, 2850, 1740, 1450, 1360, 1250, 1250, 1180, 750 cm⁻¹, ¹H NMR (500 MHz, CDCl₃) δ 0.22-0.26 (m. 1H), 0.43-0.47 (m. 1H), 0.82-0.88 (m. 2H), 0.93-0.98 (m. 3H), 0.99-1.05 (m. 1H), 1.13-1.15 (m. 1H), 1.22-1.27 (m. 5H), 1.42-1.49 (m. 5H), 1.99 (s. 1H), 2.22 (s. 1H), 3.50 (dd. 1H, J = 2.3, 8.4 Hz), 4.01 (dd. 1H, J = 6.3, 11.1 Hz), 4.35 (dd. 1H, J = 2.7, 11.1 Hz), 4.42-4.46 (m. 1H), 7.18-7.32 (m. 8H), 7.37-7.42 (m. 3H), 7.66-7.71 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 150.8, 149.1, 145.0, 141.1, 140.2, 128.6, 128.4, 127.9, 127.7, 127.2, 126.2, 125.7, 125.5, 120.2, 119.9, 109.0, 78.4, 74.6, 72.6, 69.8, 48.3, 41.0, 37.7, 33.8, 33.6, 32.5, 27.3, 26.8, 26.4, 26.0, 25.9, 14.2, Anal. Calcd for C₃₃H₄₁NO₅S : C, 70.31 H, 7.33 N, 2.48. Found: C, 70.33; H, 7.35 N, 2.45.

13b: Yield: 98%; $[\alpha]_D$ = +14.27 (*c* 2.00, CHCl₃); IR (KRS-5) 3330, 3060, 2980, 2950, 2870, 1450, 1360, 1180, 960, 740

cm⁻¹: ¹H NMR(500 MHz, CDCl₃) δ 0.27 (d, 3H, J = 6.5 Hz). 0.47 (d, 3H, J = 6.5 Hz). 0.74-0.80 (m, 1H), 1.18-1.33 (m, 3H). 1.30 (s, 3H), 1.50 (s, 3H), 2.02 (s, 1H), 2.15 (s, 1H), 3.01 (s, 3H), 3.55 (dd, 1H, J = 2.1, 8.5 Hz). 3.94 (dd, 1H, J = 5.9, 11.2 Hz). 4.28 (dd, 1H, J = 2.8, 11.2 Hz). 4.46-4.49 (m, 1H). 7.19-7.31 (m, 8H), 7.36-7.42 (m, 3H). 7.66-7.71 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 150.8, 149.1, 145.1, 141.0, 140.3, 128.6, 128.4, 127.8, 127.2, 126.1, 125.7, 125.6, 120.1, 119.9, 109.0, 78.2, 74.5, 72.6, 69.4, 49.1, 42.6, 37.7, 27.4, 26.8, 24.4, 23.2, 21.3, Anal. Calcd for C₃₀H₃₇NO₅S : C, 68.81; H, 7.21; N, 7.12. Found: C, 68.83; H, 7.25; N, 7.15.

13c: Yield : 95%; $[\alpha]_D = +48.88$ (*c* 2.00, CHCl₃); IR (KRS-5) 3340, 2980, 2940, 1730, 1450, 1360, 1250, 1180, 970, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.54 (t. 3H, J = 7.4 Hz), 1.14-1.16 (m, 1H), 1.12-1.18 (m, 1H), 1.30 (s. 3H), 1.47 (s. 3H), 2.03 (m. 1H), 2.21 (s, 1H), 3.02 (s, 3H), 3.61 (dd, 1H, J = 2.84, 8.42 Hz), 3.96 (dd, 1H, J = 5.85, 11.2 Hz), 4.29 (dd, 1H, J = 2.6, 11.3 Hz), 4.37-4.41 (m, 1H), 7.19-7.27 (m, 7H), 7.30-7.33 (m, 1H), 7.35-7.38 (m, 1H), 7.41-7.42 (m, 2H), 7.68 (dd, 2H, J = 7.7, 8.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 151.0, 149.1, 145.3, 140.6, 140.3, 128.5, 128.4, 127.8, 127.7, 127.2, 126.1, 125.6, 125.4, 120.1, 119.9, 109.1,78.3, 75.0, 72.5, 69.3, 53.0, 37.7, 27.3, 26.8, 26.1, 14.2, 10.3, Anal. Calcd for C₂₈H₃₃NO₅S : C, 67.85; H, 6.71; N, 2.83, Found: C, 67.83; H, 6.75; N, 2.85.

General preparation of 14a, 14b and 14c: Representative procedure for the preparation of 1-cyclohexyl-1,2,5-tridide-oxy-3,4-O-isopropylidene-5-iodo-2-[(9-phenylfluoren-9-yl)amino]-D-lyxose (14a). To a solution of 13a (1.2 g, 2.13 mmol) in DMF (20 mL) was added LiI (0.31g, 2.33 mmol) at rt. The reaction mixture stirred for 36 h at 75 °C and cooled down to rt with cold water. To the reaction mixture added saturated NaHCO₃ solution (10 mL) and stirred for 5 min and extracted with CH₂Cl₂ (3 × 30 mL). The combined organic extracts were dried with anhydrous MgSO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 3:1, v/v) to afford pure 14a (1.01 g, 80%) as an oil.

14a: $[\alpha]_D = +14.56$ (c 2.00, CHCl₃); IR (KRS-5) 3330, 3040, 2930, 2850, 1450, 980, 870, 760 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.40-1.66 (m, 10H), 1.33 (s, 3H), 1.39 (s, 3H), 1.42-1.47 (m, 1H), 1.82-1.87 (m, 2H), 2.22-2.43 (bs. NH), 2.92-3.01 (m, 1H), 3.23 (dd, 2H, J = 2.8 Hz), 3.31-3.34 (m, 1H), 3.38-3.41 (m, 1H), 7.16-7.30 (m, 8H), 7.35-7.40 (m, 3H), 7.63-7.69 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 150 5, 148 7, 144.4, 142.0, 141.1, 127.7, 127.3, 126.6, 126.3, 126.0, 125.4, 124.8, 124.3, 119.5, 118.7, 107.4, 81.4, 74.7, 71.4, 59.3, 48.2, 44.5, 26.6, 26.1, 22.5, 22.3, 22.1, 22.0, 15.1, 6.0.

14b: Yield: 85%: $[\alpha]_D = +21.34$ (c 2.00, CHCl₃); IR (KRS-5) 3330, 3060, 2950, 2870, 1450, 1370, 1240, 1170, 1120, 1040, 890, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.21 (d. 3H, J = 6.5 Hz), 0.51 (d. 3H, J = 6.5 Hz), 0.67-0.72 (m, 1H), 0.86-0.90 (m, 1H), 1.39 (s, 3H), 1.55 (s, 3H), 2.06 (s, 1H), 2.16 (s, 1H), 2.88 (dd. 1H, J = 5.9, 10.6 Hz), 3.08 (dd, 1H, J = 4.5, 10.6 Hz), 3.49 (dd. 1H, J = 1.5, 7.8 Hz), 4.17-4.21 (m, 1H), 7.18-7.29 (m, 8H), 7.30-7.31 (m, 1H), 7.36-7.40 (m, 1H), 7.42-7.44 (m, 2H), 7.66-7.71 (m, 2H); ¹³C NMR(125 MHz, CDCl₃) δ 151.3, 149.3, 145.4, 141.0, 140.3, 128.5, 128.3, 127.9, 127.7, 127.2,

126.2. 125.8. 125.7. 120.0. 119.9, 108.5, 82.5, 75.5, 72.5, 60.4. 49.4, 43.2, 27.6, 27.4, 24.6, 23.6, 21.0, 14.2, 6.8.

14c: Yield : 81%: $[\alpha]_D$ = +11.56 (c 2.00, CHCl₃); IR (KRS-5) 3430. 3060, 2980, 2930, 2870. 1450. 1370, 1240, 1030. 730 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.53 (t. 3H, J = 7.4 Hz). 0.92-0.97 (m, 1H), 1.05-1.11 (m, 1H), 1.39 (s. 3H). 1.51 (s, 3H), 2.02 (s. 1H), 2.25 (s. 1H), 2.92 (dd, 1H, J = 6.0, 10.6 Hz). 3.12 (dd. 1H, J = 4.0, 10.6 Hz). 3.53 (dd. 1H, J = 2.4, 7.8 Hz), 4.08-4.11 (m, 1H), 7.16-7.25 (m, 5H), 7.27-7.30 (m, 2H), 7.30-.32 (m, 1H), 7.35-7.38 (m, 1H), 7.42-7.44 (m, 2H), 7.67-7.70 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 151.4, 149.2, 145.5, 140.5, 140.3, 128.4, 128.3, 128.0, 127.9, 127.7, 127.1, 126.2, 125.7, 125.4, 120.0, 119.9, 119.6, 108.6, 82.6, 76.0, 72.4, 53.0, 27.6, 27.4, 26.7, 10.2, 6.9.

General preparation of 15a, 15b and 15c: Representative procedure for the preparation of (3S,4S)-4-(9-phenyl-9H-fluoren-9-ylamino)-5-cyclohexylpent-1-en-3-ol (15a). To a solution of 14a (1.36 g. 4.11 mmol) in THF (15 mL) was added n-BuLi (1.6 M in hexane, 7.69 mL, 12.3 mmol) at 0 °C. The reaction mixture stirred for 20 min and quenched by addition of saturated NH₄Cl solution (10 mL) and the reaction mixture extracted with EtOAc (3 \times 30 mL). The combined organic extracts were dried with anhydrous MgSO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 7:1, v/v) to afford pure 15a (1.57 g. 90%) as an oil.

15a: IR (KRS-5) 3450, 3390, 3310, 3060, 2920, 2850, 1450, 1070, 930, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.27-0.29 (m, 1H), 0.46-0.51 (m, 1H), 0.82-0.90 (m, 6H), 1.15-0.31 (m, 2H), 1.42-1.50 (m, 3H), 2.13-2.17 (m, 1H), 2.58 (s, 2H), 3.62-3.64 (m, 1H), 4.99-5.01 (m, 1H), 5.12-5.16 (m, 1H), 5.48-5.55 (m, 1H), 7.17-7.40 (m, 11H), 7.65-7.71 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 150.4, 149.0, 145.3, 141.0, 140.2, 139.6, 128.4, 128.3, 127.8, 127.2, 126.4, 126.1, 125.4, 120.0, 119.9, 115.4, 74.1, 72.6, 54.2, 41.6, 34.0, 33.6, 32.8, 26.4, 26.2, 26.1, 14.1.

15b: IR (KRS-5) 3570, 3420, 3310, 3060, 2950, 2870, 1450, 1280, 1030, 920, 740 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.31 (d, 3H, J = 6.2 Hz), 0.51 (d, 3H, J = 6.2 Hz) 0.80-0.90 (m, 2H), 1.20-1.36 (m, 2H), 2.09-2.12 (m, 1H), 2.40 (s, 1H), 3.63-3.65 (m, 1H), 4.98 (d, 1H, J = 10.5 Hz), 5.12 (d, 1H, J = 17.2 Hz), 5.46-5.51 (m, 1H), 7.19-7.40 (m, 11H), 7.66-7.71 (m, 2H): ¹³C NMR (125 MHz, CDCl₃) δ 148.0, 140.0, 128.4, 127.8, 127.7, 127.2, 126.4, 126.0, 125.5, 120.0, 119.8, 115.3, 74.0, 54.8, 43.2, 24.5, 23.1, 21.6.

15c: IR (KRS-5) 3600, 3410, 3340, 3060, 2960, 2930, 2870, 1450, 1380, 1280 cm⁻¹: 1 H NMR (500 MHz, CDCl₃) 3 0.56-0.59 (t, 3H, J = 7.4 Hz), 0.84-0.96 (m, 2H), 0.99-1.09 (m, 1H), 1.25 (s, 1H), 2.01-2.12 (m, 1H), 3.71-3.73 (m, 1H), 5.01-5.03 (m, 1H), 5.14-5.18 (m, 1H), 5.43-5.50 (m, 1H), 7.18-7.46 (m, 11H), 7.68 (dd, 2H, J = 7.5, 13.9 Hz)); 13 C NMR (125 MHz, CDCl₃) 3 0 143.0, 141.5, 140.6, 136.9, 129.4, 128.6, 128.2, 127.7, 126.3, 125.8, 118.2, 79.1, 67.8, 56.3, 24.6, 9.6.

General preparation of 16a, 16b and 16c: Representative procedure for the preparation of (3S,4S)-3-benzyloxy-5-cyclohexyl-4-(9-phenyl-9H-fluoren-9-ylamino)-1-penten (17a). To a solution of 15a $(1.20~{\rm g}, 3.54~{\rm mmol})$ in THF $(15~{\rm mL})$ was added slowly NaH $(0.15~{\rm g}, 6.37~{\rm mmol})$ at 0 °C. The reaction

170

mixture stirred for 10 min, and added benzylbromide (0.72 g, 4.25mmol) and stirred for 30 h at rt. The reaction quenched by addition of saturated NaHCO₃ solution (15 mL) and the reaction mixture extracted with EtOAc (3 \times 30 mL). The combined organic extracts were dried with anhydrous MgSO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 10:1, v/v) to afford pure **16a** (1.64 g, 90%) as an oil.

16a: IR (KRS-5) 3330, 3060, 3030, 2920, 2850, 2360, 1450, 1110, 1070, 740, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.40-0.43 (m, 1H), 0.54-0.59 (m, 1H), 0.83-0.88 (m, 2H), 0.99-1.08 (m, 3H), 1.25 - 1.30 (m, 3H), 1.43-1.45 (m, 1H), 1.51-1.53 (m, 2H), 1.98 (s, 1H), 2.39-2.44 (m, 1H), 3.28-3.29 (m, 1H), 3.90 (d, 1H, J = 12.3 Hz), 4.04 (d, 1H, J = 12.3 Hz), 5.15-5.23 (m, 2H), 5.90-5.97 (m, 1H), 7.03-7.07 (m, 2H), 7.13-7.28 (m, 11H), 7.32-7.35 (m 1H), 7.43-7.45 (m, 2H), 7.57-7.59 (m, 1H), 7.67 (d, 1H, J = 7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 150.4, 150.3, 145.8, 140.8, 139.1, 136.1, 128.4, 128.2, 128.1, 128.0, 127.8, 127.4, 127.2, 127.1, 126.3, 126.2, 125.6, 120.0, 119.7, 81.9, 72.8, 70.1, 52.0, 39.8, 34.0, 33.5, 32.9, 26.6, 26.4, 26.2.

16b: IR (KRS-5) 3330, 3060, 3030, 3000, 2870, 1450, 1360, 1110, 1070, 1030, 740, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.40 (d, 3H, J = 6.5 Hz), 0.54 (d, 3H, J = 6.5 Hz), 0.79-0 93 (m, 1H), 1.20-1.30 (m, 2H), 1.41-1.48 (m, 1H), 2.38-2.41 (m, 1H), 3.30-3.32 (m, 1H), 3.91 (d, 1H, J = 12.3 Hz), 4.06 (d, 1H, J = 12.3 Hz), 5.13-5.22 (m, 2H), 5.89-5.96 (m, 1H), 6.98-7.07 (m, 2H), 7.19-7.27 (m, 8H), 7.34-7.36 (m, 4H), 7.43-7.45 (m, 2H), 7.58-7.67 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 150.3, 139.1, 136.1, 128.4, 128.2, 128.1, 128.0, 127.8, 127.7, 127.6, 127.4, 127.2, 127.1, 127.0, 126.3, 126.1, 125.7, 119.8, 119.7, 117.1, 82.1, 72.8, 72.2, 70.2, 53.0, 41.4, 24.1, 23.0, 22.2.

16c: IR (KRS-5) 3330, 3060, 3030, 2960, 2930, 2870, 1490, 1450, 1230, 1070, 930 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.62 (t, 3H, J = 7.4 Hz), 0.90-0.99 (m, 1H), 1.14-1.22 (m, 1H), 2.28-2.32 (m, 2H), 3.39-3.41 (m, 1H), 4.03 (d, 1H, J = 12.2 Hz), 4.27 (d, 1H, J = 12.2 Hz), 5.14-5.24 (m, 2H), 5.73-5.80 (m, 1H), 7.04-7.36 (m, 14H), 7.41-7.46 (m, 2H), 7.61-7.66 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 150 5, 150.3, 146.1, 140.5, 140.2, 138.9, 136.0, 128.4, 128.2, 128.1, 128.0, 127.8, 127.7, 127.5, 127.4, 127.3, 127.2, 127.0, 126.2, 126.0, 125.8, 119.7, 118.0, 82.3, 72.9, 72.2, 70.2, 57.0, 23.8, 10.0.

General preparation of 17a, 17b and 17c: Representative procedure for the preparation of (2R,3R)-2-benzyloxy-4-cyclohexyl-3-(9-phenyl-9H-fluoren-9-ylamino)-1-pentanoic acid (17a). To a solution of 16a (1.00 g. 1.95 mmol) in acetone (20 mL) was added NMO (0.66 g. 6.23 mmol) and catalytic amount of OsO4 at 0 °C. The reaction mixture stirred for 12 h. and added water (30 mL) and stirred for 10 min at rt. The reaction mixture extracted with EtOAc (3 × 30 mL). The combined organic extracts were dried with anhydrous MgSO₄ and evaporated under vacuo. The crude product dissolved in EtOH/H₂O (1:1, 20 mL) and added NaIO₄ (0.54 g, 2.53 mmol) at rt. and stirred for 1h. The solvent was evaporated under vacuo and the crude mixture dissolved in THF/H₂O (1:1, 20 mL) and added K₂CO₃ (0.54 g. 0.39 mmol) and stirred for 5h. at rt. The reaction mixture extracted with EtOAc (3 \times 30 mL) and combined organic extracts were dried with anhydrous MgSO₄

and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 1:2, v/v) to afford pure 17a (0.78 g, 75 %) as an oil.

17a: IR (KRS-5) 3380, 3030, 2950, 2920, 2840, 1710, 1640, 1430, 1270, 1210, 710, 670 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.34-1.36 (m, 2H), 1.40-1.44 (m, 11H), 2.01-2.10 (bs. NH), 3.25-3.34 (m, 1H), 3.94 (d, 1H, *J* = 12.4 Hz), 7.06-7.07 (m, 3H), 7.14-7.19 (m, 5H), 7.34-7.55 (m, 2H), 7.60-7.89 (m, 8H), 11.0 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 143.2, 142.5, 141.9, 140.3, 137.5, 137.2, 136.4, 136.2, 129.0, 129.2, 128.9, 128.7, 128.4, 128.1, 127.9, 127.6, 127.5, 127.3, 126.5, 126.3, 89.6, 73.9, 67.0, 45.1, 35.4, 32.0, 31.4, 28.1, 27.5, 25.1, 24.6.

17b: IR (KRS-5) 3390, 3060, 2960, 2920, 2850, 1720, 1650, 1450, 1270, 1110, 740, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.35 (d, 3H, J = 6.4 Hz), 0.68 (d. 3H, J = 6.4 Hz), 0.96-1.01 (m, 1H), 1.24-1.27 (m, 1H), 1.33-1.40 (m, 1H), 1.42-1.48 (m, 1H), 2.54-2.59 (m, 1H), 3.15 (d. 1H, J = 4.2 Hz), 4.01 (d, 1H, J = 12.4 Hz), 4.45 (d. 1H, J = 12.4 Hz), 6.98-7.05 (m, 2H), 7.12-7.16 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 172 0, 147.9, 147.0, 142.6, 141.2, 139.7, 137.5, 129.4, 129.2, 128.9, 128.5, 128.4, 128.3, 128.0, 127.6, 127.4, 125.7, 125.6, 124.8, 120.5, 120.3, 72.5, 72.4, 52.0, 39.3, 23.9, 23.2, 21.6.

17c: IR (KRS-5) 3330, 3060, 2960, 2930, 2870, 1730, 1600, 1450, 1210, 1120 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.70 (t, 3H. J = 7.4 Hz), 1.08-1.17 (m, 1H), 1.24-1.27 (m. 1H), 1.63-1.71 (m. 1H), 2.39-2.43 (m, 1H), 3.17 (d, 1H. J = 4.3 Hz), 4.00 (d, 1H. J = 12.3 Hz), 4.51 (d, 1H. J = 12.3 Hz), 7.01-7.04 (m, 2H), 7.08-7.16 (m, 1H), 7.21-7.29 (m, 5H), 7.31-7.36 (m, 2H), 7.44-7.47 (m, 1H), 7.53 (d, 1H, J = 7.5 Hz), 7.72 (d, 1H, J = 7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 147.6, 147.0, 142.7, 141.3, 139.6, 137.5, 129.4, 129.3, 129.0, 128.4, 128.3, 128.0, 127.6, 127.5, 125.7, 125.4, 124.9, 120.5, 120.3, 72.8, 72.5, 55.7, 22.8, 10.5.

Methyl N-[(2S,3S)-2-benzyloxy-4-cyclohexyl-3-(9-phenyl-9H-fluoren-9-ylamino)butanoyl-L-leucinate (18). To a mixed solution of 17 (0.57 g. 1.08 mmol), L-leu-OCH₃ (0.41 g. 3.24 mmol) and HOBT in THF (10 mL) with catalytic amount of p-TsOH was added dropwise DCC (0.16 g, 1.19 mmol) in THF (4 mL) at 0 °C. The reaction mixture stirred for 5 min and added Et₃N (0.22 mL, 1.60 mmol) and stirred for 5 h at rt. The reaction mixture filtered with celite sintered glass filter. The organic layer treated with saturated NaHCO₃ and extracted with EtOAc (3 × 30 mL). The combined organic extracts were dried with anhydrous MgSO₄ and evaporated under vacuo. The crude mixture was purified by flash column chromatography (hexane/EtOAc, 5:1, v/v) to afford pure 18 (0.53 g, 75 %) as an oil.

IR (KRS-5) 3480, 3310, 3060, 2960, 2870, 2120, 1740, 1660, 1450, 1210, 730 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.79 (t, 3H, J = 7.4 Hz), 0.88 (d, 6H, J = 6.4 Hz), 1.06-1.11 (m, 1H), 1.25-1.29 (m, 1H), 1.35-1.38 (m, 1H), 1.40-1.49 (m, 2H), 1.57-1.61 (m, 1H) 2.29-2.34 (m, 1H), 2.31-2.32 (m, 1H), 3.25 (d, 1H, J = 9.5 Hz), 3.42 (d, 1H, J = 3.5 Hz), 3.70 (s, 3H), 3.81 (d, 1H, J = 11.9 Hz), 3.92 (d, 1H, J = 11.9 Hz), 4.51-4.56 (m, 1H), 6.96-6.99 (m, 3H), 7.13-7.18 (m, 4H), 7.19-7.25 (m, 3H), 7.29-7.33 (m, 3H), 7.41-7.44 (m, 3H), 7.64-7.67 (m, 2H); ¹³C

NMR (125 MHz, CDCl₃) δ 173.0, 171.7, 151.4, 150.1, 145.7, 140.5, 140.2, 137.6, 128.6, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.5, 126.9, 126.3, 126.2, 119.7, 119.6, 80.2, 72.7, 72.4, 56.0, 55.8, 52.2, 50.0, 41.4, 35.0, 25.5, 24.9, 24.8, 24.7, 24.2, 22.8, 22.0, 11.4.

N-[(2S,3S)-3-Amino-2-hydroxy-4-cyclohexylbutanoyl]-**L-leucine** (20). To a solution of 18 (0.80 g, 1.22 mmol) in THF/H₂O (2:1, 20 mL) was LiOH (0.05 mg, 2.4 mmol) at 0 °C. The reaction mixture stirred for 3 h at rt. and added 3% HCl (15 mL). The reaction mixture extracted with i-PrOH/CH₂Cl₂ (1:3. 40 mL) and the combined organic extracts were dried with anhydrous MgSO₄ and evaporated under vacuo to give enide product 19. The crude product 19 was hydrogenated with 10% Pd/C (0.09 g) in MeOH (15 mL) at 70 °C for 10 h. The reaction mixture was filtered through celite and evaporated under vacuo to give crude solid product. The filterate and solid were subjected to ion-exchange chromatography (Dowex 50W-X8, eluting 3 N NH₃ in H₂O) to afford pure 20 (0.32 g. 83 %) as a solid. mp 201-203 °C; $[\alpha]_D = -13.6$ (c 1.50, 1N HCl); IR (KRS-5) 3400, 3360, 3350, 2970, 2820, 1720, 1670, 1470, 1200, 670 cm⁻¹; ¹H NMR (500 MHz, D₂O) δ 0.90 (d, 6H, J =6.4 Hz), 1.25-1.47 (m, 13H), 1.74(m, 2H), 1.85(m, 1H), 2.90 (m, 1H), 4.39 (d. 1H, J = 8.9 Hz), 4.42 (d. 1H, J = 13.5 Hz) 13 C NMR (125 MHz, CDCl₃) δ 174.9, 172.7, 73.1, 53.5, 52.4, 41.2, 35.9, 33.5, 33.2, 31.4, 29.6, 28.9, 25.8, 23.6, 23.3, 22.1. Anal. Calcd for C₁₆H₃₀N₂O₄: C. 61.12; H. 9.62; N. 8.91. Found: C. 61.15; H, 9.65; N. 8.89.

References and Notes

- (a) Cole, D. C. Tetrahedron 1994, 50, 9517. (b) Juaristi, E.; Quintana, D.; Escalante, J. Aldrichimica Acta 1994, 27, 3. (c) McInerney, B. V.; Taylor, W. C. Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam, 1995; vol. 15, p 381 and references cited therein. (d) Hill, R. A. Prog. Chem. Org. Nat. Prod. 1986, 49, 1. (e) Enantioselective Synthesis of β-Amino Acids; Eusebio Juaristi, Ed.; Wiley-VCH: New York, 1997.
- (a) Rich, D. H. J. Med. Chem. 1985, 28, 263. (b) Maibaum, J.;
 Rich, D. H. J. Org. Chem. 1988, 53, 689. (c) Morishma, H.;
 Umezawa, H. J. Antibiotics 1973, 26, 115.
- 3. (a) lizuka, K.; KamiJo, T.; Harada, H.; Akhane, K.; Kubota, T.;

- Umeyama, H.; Kiso, Y. J. Chem. Soc. Chem. Commun. 1989, 1678.
 (a) Kobayashi, Y.; Takemoto, Y.; KamiJo, T.; Ito, Y.; Terashima, S. Tetrahedron 1992, 48, 1853. (b) OJima, I.; Park, Y. H.; Sun, S. M.; Brigaud, T.; Zhao, M. Tetrahedron Lett. 1992, 33, 5737. (c) Hattoro, K.; Yamamoto, H. Tetrahedron 1994, 50, 2785. (d) Kobayashi, Y.; Takemoto, Y.; KamiJo, T.; Ito, Y.; Terashima, S. Tetrahedron 1990, 31, 3031. (e) Matsumoto, T.; Kobayashi, Y.; Takemoto, Y.; Ito, Y.; KamiJo, T.; Harada, H.; Terashima, S. Tetrahedron Lett. 1990, 48, 1853. (f) Inokuchi, T.; Tanigawa, S.; Kanazaki, M.; Torii, S. SynLett 1991, 701. (g) Righi, G.; Rumboldt, G. J. Org. Chem. 1996, 61, 3557. (h) Pasto, M.; CasteJon, P.; Moyano, A.; Pericas, M. A.; Riera, A. J. Org. Chem. 1996, 61, 6033.
- Lee, J. H.; Lee, B. W.; Jang, K. C.; Jeong, I. Y.; Yang, M. S.; Lee, S. G.; Park, K. H. Synthesis 2003, 829.
- (a) Park, K. H.; Yoon, Y. J.; Lee, S. G. J. Chem. Soc. Perkin Trans. I 1994, 2621. (b) Csuk, R.; Hugemer, M.; Vasella, A. Heb. Chim. Acta 1998, 71, 609. (c) Zhou, P.; Salleh, H.; Chan, P. C.; LaJiioe, G.; Honex, J. F.; Nambiar, P. T. C.; Ward, O. P. Carbohyd. Res. 1993, 239, 155.
- (a) Chong, J. M.: Cry, D. R.: Mar, E. K. Tetrahedron Lett. 1987,
 28, 5009.
 (b) Alexakis, A.: Jachiet, D.; Normant, J. F. Tetrahedron 1986, 42, 5607.
 (c) Berkowitz, D. B.; Chisowa, E.; McFadden, J. M. Tetrahedron 2001, 57, 6329.
- Green, T. W.; Wuts, P. G. M. Protective in Organic Synthesis, 2nd ed.; John Wiley & Sons, Inc.: 1991; p 67.
- (a) Park, K. H.; Yoon, Y. J.; Lee, S. G. Tetrahedron Lett. 1994, 35, 9737.
 (b) Lee, J. H.; Lee, B. W.; Jang, K. C.; Jeong, I. Y.; Yang, M. S.; Lee, S. G.; Park, K. H. Synthesis 2003, 829.
 (c) Park, S. H.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1447.
- (a) Xu, Z.; Johannes, C. W.; Houri, A. F.; La, D. S.; Cogan, D. A.; Hofilena, G. E.; Hoveyda, A. H. J. Am. Chem. Soc. 1997, 119, 10302. (b) Yates, M. H. Tetrahedron Lett. 1997, 38, 2813. (c) Branco, L. C.; Afonso, C. A. M. J. Org. Chem. 2004, 69, 4318. (d) Choudary, B. M.; Chodari, N. S.; Jyothi, K.; Kantam, M. L. J. Am. Chem. Soc. 2002, 124, 5341. (e) Molander, G. A.; Figueroa, R. Org. Lett. 2006, 8, 75.
- Tobe, H.: Morishima, H.: Takita, T.: Aoyagi, T.: Umezawa, H. Agr. Biol. Chem. 1979, 43, 591.
- Aoyagi, T.; Tobe, H.; KoJma, F.; Hamada, M.; Takeuchi, T.; Umexawa, H. J. Antiobiot. 1978, 31, 221. (b) Puiroux, J.; Loughton, B. G. Arch. of Insect Biochem. Phy. 1992, 19, 193.
- (a) Regeling, H.; de Rouville, E.; Chittenden, G. J. F. Recl. Tran. Chim. PaysBas 1987, 106, 461. (b) Csuk, R.; Hugemer, M.; Vasella, A. Helv. Chim. Act. 1988, 71, 609. (c) Lee, S. G.; Jeong, H. J. Bull. Korean Chem. Soc. 1998, 19, 598. (d) Lee, S. G.; Lee, J. H. Bull. Korean Chem. Soc. 1997, 18, 556.