DOI QR코드

DOI QR Code

Platinum-Catalyzed Reductive Aldol and Michael Reactions

  • Lee, Ha-Rim (Division of Energy Systems Research, Ajou University) ;
  • Jang, Min-Soo (Division of Energy Systems Research, Ajou University) ;
  • Song, Young-Jin (Division of Energy Systems Research, Ajou University) ;
  • Jang, Hye-Young (Division of Energy Systems Research, Ajou University)
  • Published : 2009.02.20

Abstract

For the Pt-catalyzed nucleophilic addition of enones, Pt complexes were employed in the presence of various phosphine ligands and $H_2\;(or\;Et_3SiH),$ affording inter- and intra-molecular coupling products in good to modest yield. Depending on reaction protocols, different phosphine ligands were required to optimize the conditions. In the aldol reaction, the Pt catalyst involving $P(2,4,6-(OMe)_3C_6H_2)3\;or\;P(p-OMeC_6H_4)_3$ was chosen. Michael reaction proceeds in good yields in the presence of $P(p-CF_3C_6H_4)_3$. Regarding the activity of the reductants, $H_2$ exhibited superior activity to $Et_3SiH$, resulting in a shorter reaction time and higher yield in the aldol and Michael reaction. In light of the deuterium labeling studies, the catalytic cycle including the hydrometalation of the enones by the platinum hydride species was proposed.

Keywords

References

  1. Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271 https://doi.org/10.1002/adsc.200600368
  2. Liu, C.; Bender, C. F.; Han, X.; Widenhoefer, R. A. Chem. Commun. 2007, 3607
  3. Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew. Chem. Int. Ed. 2008, 47, 4268 https://doi.org/10.1002/anie.200701589
  4. Jiang, X.-b.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. J. Org. Chem. 2004, 69, 2327 https://doi.org/10.1021/jo035487j
  5. Wang, X.; Widenhoefer, R. A. Organometallics 2004, 23, 1649 https://doi.org/10.1021/om0498549
  6. Liu, C.; Han, X.; Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 3700 https://doi.org/10.1021/ja031814t
  7. Qian,H.; Han, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 9536 https://doi.org/10.1021/ja0477773
  8. Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070 https://doi.org/10.1021/ja043278q
  9. Bigeault, J.; Giordano, L.; de Riggi, I.; Gimbert, Y.; Buono, G. Org. Lett. 2007, 9, 3567 https://doi.org/10.1021/ol071386m
  10. Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16 https://doi.org/10.1021/ja01079a004
  11. Delpech, F.; Asgatay, S.; Castel, A.; Rivière, P.; Rivière-Baudet, M.; Amin-Alami, A.; Manriquez, J. Appl. Organomet. Chem. 2001, 15, 626 https://doi.org/10.1002/aoc.198
  12. Itazaki, M.; Nishihara, Y.; Osakada, K. J. Org. Chem. 2002, 67, 6889 https://doi.org/10.1021/jo020293+
  13. Sprengers, J. W.; Mars, M. J.; Duin, M. A.; Cavell, K. J.; Elsevier, C. J. J. Organomet. Chem. 2003, 679, 149 https://doi.org/10.1016/S0022-328X(03)00514-X
  14. Behr, A.; Naendrup, F.; Obst, D. Adv. Synth. Catal. 2002, 344, 1142 https://doi.org/10.1002/1615-4169(200212)344:10<1142::AID-ADSC1142>3.0.CO;2-P
  15. Buisine, O.; Berthon-Gelloz, G.; Brière, J.-F.; Stérin, S.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J.-P.; Markó, I. E. Chem. Commun. 2005, 3856
  16. De Bo, G.; Berthon-Gelloz, G.; Tinant, B.; Markó, I. E. Organometallics 2006, 25, 1881 https://doi.org/10.1021/om050866j
  17. Diez-Gonzalez, S.; Blanco, L. J. Organomet. Chem. 2008, 693, 2033 https://doi.org/10.1016/j.jorganchem.2008.03.007
  18. Cramer, R. D.; Lindsey, Jr. R. V.; Prewitt, C. T.; Stolberg, U. G. J. Am. Chem. Soc. 1965, 87, 658
  19. Cramer, R.; Linsey, Jr. R. V. J. Am. Chem. Soc. 1966, 88, 3534 https://doi.org/10.1021/ja00967a013
  20. Clark, H. C.; Tsang, W. S. J. Am. Chem. Soc. 1967, 89, 529 https://doi.org/10.1021/ja00979a010
  21. Clark, H. C.; Dixon, K. R.; Jacobs, W. J. J. Am. Chem. Soc. 1969, 91, 1346 https://doi.org/10.1021/ja01034a015
  22. Clark, H.C.; Kurosawa, H. Inorg. Chem. 1972, 11, 1275 https://doi.org/10.1021/ic50112a024
  23. Clark, H. C.; Kurosawa, H. Inorg. Chem. 1973, 12, 357 https://doi.org/10.1021/ic50120a024
  24. Clark, H. C.; Kurosawa, H. Inorg. Chem. 1973, 12, 1566 https://doi.org/10.1021/ic50125a018
  25. Clark, H. C.; Jablonski, C. R.; Wong, C. S. Inorg. Chem. 1975, 14, 1332 https://doi.org/10.1021/ic50148a026
  26. Kurosawa, H. Inorg. Chem. 1976, 15, 120 https://doi.org/10.1021/ic50155a026
  27. Gómez, M.; Muller, G.; Salnz, D.; Sales, J. Organometallics 1991, 10, 4036 https://doi.org/10.1021/om00058a019
  28. Hsu, C.-Y.; Orchin, M. J. Am. Chem. Soc. 1975, 97, 3553
  29. Pittman, Jr. C. U.; Kawabata, Y.; Flowers, L. I. J. Chem. Soc., Chem. Commun. 1982, 473
  30. Holt, M. S.; Wilson, W. L.; Nelson, J. H. Chem. Rev. 1989, 89, 11 https://doi.org/10.1021/cr00091a002
  31. Stille, J. K.; Su, H.; Brechot, P.; Parrinello, G.; Hegedus, L. S. Organometallics 1991, 10, 1183 https://doi.org/10.1021/om00050a060
  32. Madine, J. W.; Wang, X.; Widenhoefer, R. A. Org. Lett. 2001, 3, 385 https://doi.org/10.1021/ol006901u
  33. Wang, X.; Chakrapani, H.; Madine, J. W.; Keyerleber, M. A.; Widenhoefer, R. A. J. Org. Chem. 2002, 67, 2778 https://doi.org/10.1021/jo015986p
  34. Jung, I. G.; Seo, J.; Lee, S. I.; Choi, S. Y.; Chung, Y. K. Organometallics 2006, 25, 4240 https://doi.org/10.1021/om0606284
  35. Arisawa, M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A. J. Org. Chem. 2006, 71, 4255 https://doi.org/10.1021/jo060308u
  36. Ikeda, S.-i.; Daimon, N.; Sanuki, R.; Odashima, K. Chem. Eur. J. 2006, 12, 1797 https://doi.org/10.1002/chem.200500894
  37. Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635 https://doi.org/10.1021/cr950065y
  38. Auber, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813 https://doi.org/10.1021/cr980054f
  39. Molander, G. A.; Romero, A. C. Chem. Rev. 2002, 102, 216
  40. Widenhoefer, R. A. Acc. Chem. Res. 2002, 35, 905 https://doi.org/10.1021/ar010040n
  41. Ikeda, S.-I. Angew. Chem. Int. Ed. 2003, 42, 5120 https://doi.org/10.1002/anie.200301673
  42. Huddleston, R. R.; Krische, M. J. Synlett 2003, 12
  43. Montgomery, J. Angew. Chem. Int. Ed. 2004, 43, 3890 https://doi.org/10.1002/anie.200300634
  44. Krische, M. J.; Jang, H.-Y. In Comprehensive Organometallic Chemistry III; Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: Oxford, 2007; Vol 10, p 493
  45. Widenhoefer, R. A.; Bender, C. F. In Comprehensive Organometallic Chemistry III; Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: Oxford, 2007; Vol 11, p367
  46. Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394 https://doi.org/10.1021/ar7001123
  47. Nelson, S. G. Tetrahedron Asymmetry 1998, 9, 357 https://doi.org/10.1016/S0957-4166(97)00634-4
  48. Revis, A.; Hilty, T. K. Tetrahedron Lett. 1987, 28, 4809 https://doi.org/10.1016/S0040-4039(00)96631-0
  49. Matsuda, I.; Takahashi, K.; Sato, S. Tetrahedron Lett. 1990, 31, 5334 https://doi.org/10.1016/S0040-4039(00)98064-X
  50. Taylor, S. J.; Morken, J. P. J. Am. Chem. Soc. 1999, 121, 12202 https://doi.org/10.1021/ja992952e
  51. Zhao, C. X.; Duffey, M. O.; Taylor, S. J.; Morken, J. P. Org. Lett. 2001, 3, 1829 https://doi.org/10.1021/ol015859f
  52. Zhao, C.-X.; Bass, J.; Morken, J. P. Org. Lett. 2001, 3, 2839 https://doi.org/10.1021/ol016279l
  53. Baik, T.-G.; Luis, A. L.; Wang, L.-C.; Krische, M. J. J. Am. Chem. Soc. 2001, 123, 5112 https://doi.org/10.1021/ja0040971
  54. Wang, L.-C.; Jang, H.-Y.; Roh, Y.; Lynch, V.; Schultz, A. J.; Wang, X.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 9448 https://doi.org/10.1021/ja020223k
  55. Shibata, I.; Kato, H.; Ishida, T.; Yasuda, M.; Baba, A. Angew. Chem. Int. Ed. 2004, 43, 711 https://doi.org/10.1002/anie.200352738
  56. Miura, K.; Yamada, Y.; Tomita, M.; Hosomi, A. Synlett 2004, 1985
  57. Freiría, M.; Whitehead, A. J.; Tocher, D. A.; Motherwell, W. B. Tetrahedron2004, 60, 2673 https://doi.org/10.1016/j.tet.2003.12.057
  58. Nishiyama, H.; Shiomi, T.; Tsuchiya, Y.; Matsuda, I. J. Am. Chem. Soc. 2005, 127, 6972 https://doi.org/10.1021/ja050698m
  59. Shiomi, T.; Ito, J.-I.; Yamamoto, Y.; Nishiyama, H. Eur. J. Org. Chem. 2006, 5594
  60. Zhao, G.-L.; Cordova, A. Tetrahedron Lett. 2006, 47, 7417 https://doi.org/10.1016/j.tetlet.2006.08.063
  61. Lumby, R. J. R.; Joensuu, P. M.; Lam, H. W. Org. Lett. 2007, 9, 4367 https://doi.org/10.1021/ol701980e
  62. Chrovian, C. C.; Montgomery, J. Org. Lett. 2007, 9, 537 https://doi.org/10.1021/ol063028+
  63. Nishiyama, H.; Shiomi, T. Top Curr. Chem. 2007, 279, 105 https://doi.org/10.1007/128_2007_126
  64. Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 15156 https://doi.org/10.1021/ja021163l
  65. Jang, H.-Y.; Krische, M. J. Acc. Chem. Res. 2004, 37, 653 https://doi.org/10.1021/ar020108e
  66. Jang, H.-Y.; Krische, M. J. Eur. J. Org. Chem. 2004, 19, 3953
  67. Jung, C. K.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 17051 https://doi.org/10.1021/ja066198q
  68. Garner, S. A.; Krische, M. J. J. Org. Chem. 2007, 72, 5843 https://doi.org/10.1021/jo070779w
  69. Bee, C.; Han, S. B.; Hassan, A.; Iida, H.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 2746 https://doi.org/10.1021/ja710862u
  70. Lee, H.; Jang, M.-S.; Hong, J.-T.; Jang, H.-Y. Tetrahedron Lett. 2008, 49, 5785 https://doi.org/10.1016/j.tetlet.2008.07.117
  71. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923 https://doi.org/10.1021/jo00408a041
  72. Arime, T.; Kato, N.; Komadate, F.; Saegusa, H.; Mori, N. Synth. Commun. 1994, 24, 3315 https://doi.org/10.1080/00397919408010255

Cited by

  1. Experimental and Theoretical Investigation of Hydrogenative Cyclization of Allenynes vol.2011, pp.20-21, 2011, https://doi.org/10.1002/ejoc.201100280
  2. Platinum-Catalyzed Hydrogenative Cyclization of Yne-Enones, Yne-Aldehydes, and Yne-Dienes vol.2009, pp.35, 2009, https://doi.org/10.1002/ejoc.200901005
  3. ChemInform Abstract: Platinum-Catalyzed Reductive Aldol and Michael Reactions. vol.40, pp.28, 2009, https://doi.org/10.1002/chin.200928027
  4. Platinum(II)‐Catalyzed Allylation of CO and CN Bonds under Hydrogenation Conditions vol.352, pp.17, 2009, https://doi.org/10.1002/adsc.201000648
  5. Diastereoselective Reductive Aldol Reaction of Enones to Ketones Catalyzed by Halogenotin Hydride vol.16, pp.45, 2009, https://doi.org/10.1002/chem.201002108
  6. Cu2O Nanocubes Catalyzed Difunctionalization Reaction of Vinyl Arenes with Cyclic Ethers vol.31, pp.12, 2009, https://doi.org/10.5012/bkcs.2010.31.12.3509
  7. Pt(II)-Catalyzed Cyclization of Alkyne-aldehydes vol.31, pp.7, 2009, https://doi.org/10.5012/bkcs.2010.31.7.2085
  8. Catalytic Reductive Aldol and Mannich Reactions of Enone, Acrylate, and Vinyl Heteroaromatic Pronucleophiles vol.120, pp.8, 2009, https://doi.org/10.1021/acs.chemrev.0c00053