DOI QR코드

DOI QR Code

The Preparation of Blue CoAl2O4 Powders by the Malonate Method: The Effect of the Amount of Malonic Acid Used, the Formation Pathway of CoAl2O4 Crystallites and the Characteristics of the Prepared Powders

  • Published : 2009.02.20

Abstract

A pathway for the formation of normal $CoAl_2O_4$ particles is suggested. The optimal amount of malonic acid was determined, and the characteristics of the obtained powders were investigated. Normal $CoAl_2O_4$ powders were prepared using solutions of malonic acid and metal nitrates. X-ray diffraction, Brunauer-Emmett-Teller (BET) and scanning electron microscope (SEM) measurements, as well as Fourier transform infrared (FTIR) and ultraviolet/visible (UV-Vis) spectroscopy were carried out. Normal $CoAl_2O_4$ crystallites were formed by a solid state reaction between $CoAl_2O_4$ and amorphous aluminum oxide. The optimal molar ratio of malonic acid to the nitrate anions present in the initial solution was found to be 0.30~0.35. The particles were composed of agglomerates of primary particles. The primary particles were 40 nm in size. This size was relatively constant regardless of the preparation temperature. However, the size of the agglomerated particles increased to 220 nm with increasing temperature.

Keywords

References

  1. Liotta, L. F.; Pantaleo, G.; Di Carlo, G.; Marci, G.; Deganello, G. Appl. Catal. B 2004, 52, 1 https://doi.org/10.1016/j.apcatb.2004.03.003
  2. Ji, L.; Tang, S.; Zeng, H. C.; Lin, J.; Tan, K. L. Appl. Catal. A 2001, 207, 247 https://doi.org/10.1016/S0926-860X(00)00659-1
  3. Vijaya, J. J.; Kennedy, L. J.; Sekaran, G.; Jeyaraj, B.; Nagaraja, K. S. Sensors and Actuators B 2007, 123, 211 https://doi.org/10.1016/j.snb.2006.08.011
  4. Melo, D. M. A.; Cunha, J. D.; Fernandes, J. D. G.; Bernardi, M. I.; Melo, M. A. F.; Martinelli, A. E. Mater. Res. Bull. 2003, 38, 1559 https://doi.org/10.1016/S0025-5408(03)00136-3
  5. Bolt, P. H.; Habraken, F. H. P. M.; Geust, J. W. J. Solid State Chem. 1998, 135, 59 https://doi.org/10.1006/jssc.1997.7590
  6. Zayat, M.; Levy, D. Chem. Mater. 2000, 12, 2763 https://doi.org/10.1021/cm001061z
  7. Cho, W. S.; Kakihana, M. J. Alloys and Compounds 1999, 287, 87 https://doi.org/10.1016/S0925-8388(99)00059-6
  8. Ouahdi, N.; Guillemet, S.; Demai, J. J.; Durand, B.; Er Rakho, L.; Moussa, R.; Samdi, A. Mater. Lett. 2005, 59, 334 https://doi.org/10.1016/j.matlet.2004.10.013
  9. Wang, C.; Bai, X.; Liu, S.; Liu, L. J. Mater. Sci. 2004, 39, 6191 https://doi.org/10.1023/B:JMSC.0000043586.66653.de
  10. Ghosh, S.; Ray, S. K.; Ray, P. K.; Banerjee, T. K. J. Indian Chem. Soc. 1984, 61, 850
  11. Pacewska, B.; Keshr, M. Thermochim. Acta 2002, 385, 73 https://doi.org/10.1016/S0040-6031(01)00703-1
  12. Allen, G. C.; Paul, M. Applied Spectroscopy 1995, 49, 451 https://doi.org/10.1366/0003702953964372
  13. Galwey, A. K.; Jamieson, D. M.; Le Van, M.; Berro, C. Thermochim. Acta 1974, 10, 161 https://doi.org/10.1016/0040-6031(74)85035-5

Cited by

  1. Production of Copper and Cobalt Aluminate Spinels and Their Application As Supports for Inulinase Immobilization vol.18, pp.5, 2015, https://doi.org/10.1590/1516-1439.031415
  2. Solid-state synthesis and characterization of cobalt blue core-shell pigment particles pp.00027820, 2019, https://doi.org/10.1111/jace.16191
  3. Surface magnetism in ZnO/Co3O4 mixtures vol.107, pp.4, 2009, https://doi.org/10.1063/1.3294649
  4. Alumina Coated Silica Nanosprings (NS) Support Based Cobalt Catalysts for Liquid Hydrocarbon Fuel Production From Syngas vol.12, pp.11, 2019, https://doi.org/10.3390/ma12111810
  5. Probing Al Distribution in LiCo0.96Al0.04O2 Materials Using 7Li, 27Al, and 59Co MAS NMR Combined with Synchrotron X-ray Diffraction vol.59, pp.5, 2009, https://doi.org/10.1021/acs.inorgchem.9b03260