Communications

Synthesis of Chiral C_{2}-symmetric Palladium and Rhodium SCS Pincers

Dae Hyuk Choi, Ji Yon Chon, and Jahyo Kang*
Department of Chemistry Sogang Unversity, Seoul 121-7t2, Korea. E-mall: kang/asogang.ac,kr Recewed October 15, 2008, Accepted November 6, 2008

Key word: Pincers, Ce-Symmetry. Asy mmetric addition of alkyne to aldehyde. Chiral bis(tetralydrothapyran)

The control of the ligating properties of metal centers of metal cataly'st with a well defined ligand system is one of the important goals of organic chemistry. Chiral pincer complexes consist of an enantiopure tridentate skeleton bound to a metal by at least one metal-carbon σ bond. ${ }^{1}$ The lighly protected environment for the resident metal gives pincer complexes with excellent potential as catalysts in a wide variety of asymmetric organic reactions. even though the degree of asymmetric induction has not been great so far. ${ }^{\text {lc }}$ which would warrant further endeavor in designing and synthesizing new pincer compounds.

The synthesis of the sulfur-containing C_{2}-sy mmetric chiral pincer ligand began with t-tert-butyl-2,6-diformylphenyl triflate 1. which was prepared from commercially available 4-tert-butylphenol in 2 steps. ${ }^{2}$ The triflate 1 was reacted with NaBr in the presence of a catalytic amount of CuBr in DMF at $100^{\circ} \mathrm{C}$ to give aromatic bromide $\mathbf{2}$ in 72% yield. The key step of the synthetic strategy is the enantio- and diastereoselective addition of a 0 -substituted 4 -carbon organometallic to the

Scheme 1. Reagents and conditions: (a) $\mathrm{NaBr}, \mathrm{CuBr}$ (cat), $100{ }^{\circ} \mathrm{C}, 4$ $\mathrm{h}\left(72 \%\right.$); (b) $\mathrm{TBSOCH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CZnnEt}$ (4.0 equiv.) [generated from TBSOCH $3_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}$ and Et 2 Zn], (R)-BINOL (1 equiv.), Ti($\mathrm{O}^{\prime} \mathrm{Pr}$) (1 equiv.), rt, 12 h (71% of (R, R) alcohol (89% ee) and 23% of meso): (c) Pt-Black (cat), $\mathrm{H}_{2}, \mathrm{THF}$, rt, $24 \mathrm{~h}(92 \%)$; (d) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{3} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}(100 \%)$ (e) KSAc (xs.), DMF/THF, rt, 20 h (85%) (f) $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}, \mathrm{rt}, 24 \mathrm{~h}(88 \%) ;(\mathrm{g}) \mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}$, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}(100 \%)$ (h$) \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$, , tt, l h (95%); (i) (1) $n-\mathrm{BuLi}$, THF, $-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$; (2) $\mathrm{Me} \mathrm{SnOTf}^{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}(47 \%$).
aromatic dialdehyde $\mathbf{2}$. All the efforts to reduce the numbers of steps were fruitless: Chemo- and enantioselectivity was low with the attempted addition of $\mathrm{Zn}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{X}\right)_{2}$ $(\mathrm{X}=\mathrm{Cl} \text { or } \mathrm{SPh})^{3}$ to the aldehyde carbonyl groups of 2 . and eventual inward substitution of the mercaptide 3 resulted mostly in E_{2} reaction ${ }^{+}$(Scheme 1).

Consequently. the asymmetric alkynylation ${ }^{\text {s }}$ of the aldehyde 2 with 3-buty nyloxy-tert-butyldimethylsilane, which would require a few additional steps. was carried out in two separate stages: (1) treatment of an excess amount of the tenninal acetylene with diethylzinc in refluxing toluene: (2) stepwise addition of (R)-BINOL, $\mathrm{Ti}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{4}$, a second solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and finally the aromatic dialdehyde 2 . The first stage probably generated the alky nyl(ethyl)zinc intermediate. which then added to the dicarboxaldehyde 2 in the presence of the catalyst to furnish the chiral propargyl $(R . R)$ alcohol 4 . $[\alpha]_{D}^{-3}=-2.2$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) \cdot(71 \% .89 \%$ ee). In this reaction, the use of an equivalent of BINOL was required for acceptable diastereo- and enantioselectivity and even though 23% of the corresponding meso product was produced, which could be easily separated off from the desired product by column chromatograply (TLC ($20 \% \mathrm{EtOAc} / n$-Hexane) $\mathrm{R}_{\mathrm{i}} 0.4+(R . R$) vs. 0.27 (meso)). The chiral propargy lic alcohol + was hydrogenated (H_{2}, Pt black) to give the saturated alcohol 5 , without affecting the $\mathrm{C}^{s p^{2}-}$ - Br linkage, in 92% yield. which was converted into the corresponding mesylate 6 by mesylation with MsCl and $\mathrm{Et}_{3} \mathrm{~N}$ (100% y ield) (Scheme 1).

Subsequent treatment of the mesylate 6 with potassium thioacetate at rt for $20 \mathrm{~h} \mathrm{in} \mathrm{a} \mathrm{misture} \mathrm{of} \mathrm{DMF} \mathrm{and} \mathrm{THF} \mathrm{pro-}$ vided 85% yield of the chiral bisthioacetate 7 . Deprotection of the silyl ether 7 with AcOH in aqueous THF at it for 24 h (88% yield) followed by methanesulfonylation of the resulting primary chiral diol 8 by treatment with MsCl in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ for 2 h provided the mesylate 9 in quantitative yield. Finally. the outward substitution, rather than the inward substitution mentioned above, of the dimesylate 9 by the sulfide anion generated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH ($\mathrm{rt}, \mathrm{l} \mathrm{h}$) provided cleanly the corresponding C_{2}-synmetric chiral pincer ligand, bis(tetrahydrothiapy ran) 10 in 95% yield through intramolecular cyclization. For additional preparation of metallic pincers, the bromide 10 was treated with $n-\mathrm{BuLi}$ (1 equiv.) in THF at $-78^{\circ} \mathrm{C}$ for 0.5 h and the resulting lithio derivative was treated with trimethyltin

10: $X=B r$
11: $\mathrm{X}=\mathrm{SnMe}_{3}$

$M X_{n}=P d B r: 12$
$M X_{n}=\mathrm{RhCl}_{2}: 13$

Scheme 2. Reagents and conditions: (a) $\mathrm{Pd}_{3}(\mathrm{dba}): \mathrm{CHCl}_{s}(0.5$ equiv.), Benzene, $\mathrm{Tt}, 48 \mathrm{~h}(72 \%)$; (b) $\left[\mathrm{Rh}(\mathrm{COE})_{2} \mathrm{Cl}\right]_{2}$ (0.5 equiv.), $\mathrm{THF} / \mathrm{CCl}_{4}, \mathrm{rt}, 16 \mathrm{~h}(60 \%)$.
triflate ($\mathrm{Me}_{3} \mathrm{SnOTf}^{6}{ }^{6}$ to afford organotin compound 11 in 47% yield (Scheme 1).

Finally. with the precursors of pincers, 10 and 11. in hand, we tried to synthesize the corresponding C_{2}-symmetric $S C S$ pincers of various metals (Scheme 2). The organopalladium(II) complex 12 was prepared directly from the reaction of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ complex with the bromide $\mathbf{1 0}$. Thus, the chiral pincer ligand 10 was treated with $\mathrm{Pd}_{2}(\mathrm{dba}) \cdot \mathrm{CHCl}_{3}$ in benzene at room temperature for 48 h . after which the mixture was filtered off and the solvent was concentrated in vacuo. The resulting residue was purified by column chromatography to give $\mathbf{1 2}^{8}$ in 72% yield. For some unknown reasons, the chiral pincer ligands. 10 and 11 , resisted any conversion into the corresponding Ni pincers. Thus, the reactions of the chiral bromide ligand 10 with $\mathrm{Ni}(\mathrm{COD})$ z and of the chiral tin ligand 11 with a number of $\mathrm{Ni}(\mathrm{II})$ compounds did not proceed even though there existed a number of precedents on related reactions. ${ }^{9}$

On the other hand, the organorhodium(III) catalyst 13 could be prepared as yellow solid directly in 60% yield by the reaction of the organotin complex 11 with chlorobis (cyclooctene)rhodium(I) dimer in $\mathrm{THF} / \mathrm{CCl}_{4}$ for 16 h at room temperature after recry'stallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane. ${ }^{\text {l/ }}$ Once again. the corresponding Ir pincer could not be obtained.

The evaluation of the chiral pincers, 12 and 13 as a catalyst ($5 \mathrm{~mol} \%$) was carried out in the reaction of benzaldehyde with allyltrimethyltin in the presence of silver hexafluoroantimonate as an activator. ${ }^{11}$ Unfortunately. only racemic products were obtained under mumerous reaction conditions.

In summary, a highly diastereoselective synthesis of sulfur containing C_{2}-symmetric chiral pincer ligands. 10 and $\mathbf{1 1}$. has been achieved. Additionally. we have succeeded in a sy ntheses of new sulfur containing C_symmetric chiral pincer compounds such as organopalladium(II) 12 and organorhodium(III) 13.

Acknowledgments. This work was supported by the Special Research Grant of Sogang University.

Reference

1. (a) Rybtchinski, B.: Milstein, D. Angew. Chem. Int. Ed. Engl. 1999, 38, 871. (b) Albrecht, M.: van Koten, G. Angew. Chem., Int. Ed. 2001, $40,3750-3781$. (c) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759-1792.
2. Takenaka, K.; Uozumi, Y Org. Lett. 2004, 6, 1833-1835.
3. Charette, A. B.: Beauchemin, A.; Marcoux, J.-F. J. Am. Chem. Soc. 1998, 120, 5114-5115.
4. This intermediate was prepared by several reactionstrom the addition products of $\mathrm{Zn}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ or $\mathrm{EtZn}\left(\mathrm{C}=\mathrm{CCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{Cl}$) to the dialdehyde 4 .
5. (a) Pu, L. Tetrahedron 2003, 59, 9873-9886. (b) Cozzi, P. G.; Hilgrat, R.; Zimmernarn, N. Eur J. Ong. Chen. 2004, 4095-4 105.
6. Farah, D.; Swami, K.; Kuivila, H. G. J. Organomet. Chem. 1992, 429, 311-334.
7. (S,S)-2,6-Bis(tetrahydrothiopyran-2-yl)-1-bromo-4-tert-butylbenzene (12). [$\alpha]_{\mathrm{D}}=-57.8\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.31\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right), 9 \mathrm{H}\right), 1.68-1.91\left(\mathrm{~m}, \mathrm{CH}_{2}, 6 \mathrm{H}\right)$, $1.95-2.10\left(\mathrm{~m}^{2}, \mathrm{CH}_{2}, 4 \mathrm{H}\right), 2.10-2.20\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.65-2.75(\mathrm{~m}$, $\left.\mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.89-2.97\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.40(\mathrm{dd}, J=2.4,9.0 \mathrm{~Hz}, \mathrm{CH}$, $2 \mathrm{H}), 7.39(\mathrm{~s}, \mathrm{PlH}, 2 \mathrm{H}):{ }^{13} \mathrm{CNMR}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \mathcal{E} 26.93$, $27.33,31.14,31.37,34.93,35.22,47.54,122.2,124.9,141.7$, 150.8: Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{BBrS}_{2}$: C, $58.10 ; \mathrm{H}, 7.07$: S, 15.51 . Found: $\mathrm{C}, 58.14 ; \mathrm{H}, 6.71 ; \mathrm{S}, 15.40 \mathrm{MS}(E l, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z}: 414$ $\left(\mathrm{M}^{+}\right), 333,277,101,87,57$.
(S, S)-2,6-Bis(tetrahy dro thiopyran-2-yl)-1-trime thyl-stannyl--t-tert-butylbenzene (13). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.47\left(\mathrm{~s}, \mathrm{Sn}\left(\mathrm{CH}_{3}\right), 9 \mathrm{H}\right), 1.31\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right), 9 \mathrm{H}\right), 1.40-1.50(\mathrm{~m}$, $\left.\mathrm{CH}_{2}, 2 \mathrm{H}\right), \mathrm{I} .60-\mathrm{I} .75\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 1.90-2.15\left(\mathrm{~m}, \mathrm{CH}_{2,} 8 \mathrm{H}\right), 2.64$ $\left(\mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.83$ (td, $\left.J=2.4,13.2 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right)$, $3.86(\mathrm{dd}, J=2.1,11 \mathrm{~Hz}, \mathrm{CH}, 2 \mathrm{H}), 7.37$ ($\mathrm{s}, \mathrm{PhH}, 2 \mathrm{H}$); Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~S}_{2} \mathrm{Sn}: \mathrm{C}, 55.54 ; \mathrm{H}, 7.70 ; \mathrm{S}, 12.89$. Found $\mathrm{C}, 55.42 ; \mathrm{H}$, 7.73; S, 12.25.
8. Ogamopalladium(II) complex (14). ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.25\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right), 9 \mathrm{H}\right), 1.35-1.55\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 1.90-2.20(\mathrm{~m}$, $\left.\mathrm{CH}_{2}, 8 \mathrm{H}\right), 2.30-2.40\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.91\left(\mathrm{td}, J=3.0,13 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}), 3.51\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.25(\mathrm{dd}, J=4.2,11.1 \mathrm{~Hz}$, $\mathrm{CH}, 1 \mathrm{H}), 7.00(\mathrm{~s}, \mathrm{PhH}, 2 \mathrm{H}),{ }^{1} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $24.17,24.47,31.58,32.22,34.75,40.53,56.34,60.56,118.64$, $148.84,151.72,154.43$ Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrPdS}_{2}: \mathrm{C}, 46.20$, H, 5.62: S, 12.34 Found: C, 46.24 : $\mathrm{H}, 5.59 ; \mathrm{S}, 12.31$.
9. Fossey, J. S.; Richards, C. T. J. Orgmonet. Chem. 2004, 689, 3056-3059.
10. Ogganorhodium(III) complex (15). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\dot{\delta 1.33\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.56-1.64\left(\mathrm{~m}, \mathrm{CH}_{3}, 2 \mathrm{H}\right), 1.73(\mathrm{~d}, J=13.5}$ $\mathrm{Hz}, 2 \mathrm{H}), 1.92-2.08\left(\mathrm{~m}, \mathrm{CH}_{2}, 4 \mathrm{H}\right), 2.23\left(\mathrm{t}, J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right)$, $2.68\left(\mathrm{~d}, J=15.5 \mathrm{~Hz}, \mathrm{CH}_{3}, 2 \mathrm{H}\right), 2.79\left(\mathrm{t}, J=12 \mathrm{~Hz}, \mathrm{CH}_{3}, 2 \mathrm{H}\right), 2.97$ $\left(\mathrm{d}, J=17 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 498(\mathrm{~s}, \mathrm{CH}, 2 \mathrm{H}), 6.83(\mathrm{~s}, \mathrm{PhH}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.29,26.06,28.36,31.74,31.91$, $34.46,50.57,121.85,145.74,146.09$ Anal. Caled for $\mathrm{C}_{20} \mathrm{H}_{23}$ $\mathrm{Cl}_{2} \mathrm{RhS}_{2}: \mathrm{C}, 47.34: \mathrm{H}, 5.76: \mathrm{S}, 12.64$ Found: $\mathrm{C}, 47.28: \mathrm{H}, 5.72: \mathrm{S}$, 12.60.
11. Denunark, S. E.; Fu, T. Chem. Rev 2003, 103, 2763-2794.
