2-Deoxy-25-methyldolichosterone and 3-epi-2-Deoxy-25-methyldolichosterone in Immature Seeds of Phaseolus vulgaris

Chan-Ho Park, Takao Yokota, ${ }^{\dagger}$ and Seong-Ki Kim
Department of Life Science, Chung-Ang Unversity, Seoul 156-756, Korea. ${ }^{*}$ E-mail: skkimbioalcau.ac.kr
${ }^{\dagger}$ Department of Biosciences. Teikvo University. Utsumomiva, 320-8551, Japan
Received June 20, 2009, Accepted August 17, 2009

Key Words: Brassinosteroids, Phaseolus vulgaris. Biosynthesis, Biological activity. 24-Methylene-25-methyl-BRs

Steroidal plant hormones. collectively named Brassinosteroids (BRs). control various aspects of the growth and development of plants such as stem elongation, photomorphogenesis. leaf and flower development, stress modulation and sink/source relationship. ${ }^{1-2}$ A number of naturally -occurring BRs have been identified in the plant kingdom from algae to higher plants. ${ }^{3}$ The naturally-occurring BRs can be classified as $\mathrm{C}_{2}-\mathrm{C}_{28}-$ and $\mathrm{C}_{29}-\mathrm{BR}$ s based on numbers of the carbon skeleton. ${ }^{4}$ 25-Methỵldolichosterone (1. Fig. 1) which has been identified from immature seeds of P. vulgaris is a unique $\mathrm{C}_{2} 9-\mathrm{BR}$ because it carries a tertiary butyl moiety at the end of

Figure 1. Biosynthetic pathway for $24-m 12 e t h y l-B R s$ and $24-m 11$ -thylene-25-methyl-BRs in P. wfigaris. The multiple arrows indicate multi-biosynthetic steps $1: 25$-methyldlichosterone, 2:2-deoxy-25methyldlichosterone, 3:3-epi-2-deoxy-25-methyldichosterone, 4:2deoxycastasterone, $5: 3$-epi-2-deoxycastasterone, 6 castasterone, 7:24-methylene-25-methylcholesterol, 8:24-methylcholesterol.
the side. ${ }^{5}$ A comparison of the bioactivities of dolichosterone and 1 revealed that methylation at C-25 increases BRs activity. implying that $\mathbf{1}$ is a physiologically important $\mathrm{BR}^{6}{ }^{6}$ Nevertheless, how 1 is biosynthesized in plants has not been established yet. This prompted us to search again for the presence of biosynthetic precursors of 1 in immature seeds of P. vulgaris. That search led to identification in seeds of two new BRs with a tertiary butyl at the end of the side chain, 2-deoxy-25-methyldolichosterone (2) and 3-epi-2-deoxy-25methyldolichosterone (3). Here, structural elucidation. biological activity and biogenesis of the BRs are reported.

Extraction solvent partitioning and column chromatography for purification of BRs from P. vilgaris have been reported. ${ }^{3}$ Using a large-scale reverse-phase HPLC method (Shenshu Pak. Develosil ODS $5 \mu \mathrm{~m}, 20 \times 250 \mathrm{~nm}$) with an elution flow rate of $20 \mathrm{~mL} \mathrm{~min}{ }^{-1}$ with 45% acetonitrile as the mobile phase. a compound in fraction 45 showed a blue-purplish spot on HPTLC (Merck, F_{254}) with an R_{f} of 0.52 after heating followed by spraying with 70% sulfuric acid. The compound (I) was further purified by a small-scale. normal phase HPLC method (Shensu Pak, Aquasil, $10 \times 200 \mathrm{~mm}$). It eluted at a flow rate of $3 \mathrm{~mL} \mathrm{~min}{ }^{-1}$ with a gradient of increasing iso-propanol in n-hexane ($0 \sim 20 \mathrm{~min}: 25 \%$. $20 \sim 40 \mathrm{~min}$: gradient to 60% isopropanol in n-hexane). The fraction eluting between 17 and 18 min showed biological activity in the rice lamina inclination. The fractions were combined and used for instrumental analyses. After the same large-scale reversed-phase HPLC, a compound (II) in fraction 50 also showed a blue-purplish spot on HPTLC with an R_{f} of 0.52 after heating followed by spraying with 70% sulfuric acid. II was further purified by the aforementioned small-scale normal phase HPLC. giving rise to biologically active fractions 10 and 11 in the rice lamina inclination assay. The fractions were combined and used for instrumental analyses.

For GC-MS analysis (JEOL DX303, EI, 70 eV). I and II were derivatized with methaneboronic acid in pyridine followed by heating at $70^{\circ} \mathrm{C}$ for 30 min . However. no ion peaks were found on a total ion chromatogram (TIC). Instead. methaneboronation followed by trimethylsily lation (MSTFA)
gave a sharp peak on TIC, implying that I and II have vicinal hydronyls and an isolated hydrosyl in the structure. In methane-boronate-trimethylsilylic (MB-TMSi) ether. both I and II showed the same molecular ion at an m / z of 556 and prominent ions at m / z ratios of $5+1.527,443,359.329 .167,138$, and 123 (Table 1). Prominent ions at $\mathrm{m} / \mathrm{z} 167,138$ and 123 are characteristic ions due to fission of C-20/C-22 and C-22/C-23 for 25-methyldolichosterone MB, suggesting that a vicinal hydroxyl is present in the side chain at C-22 and C-23. ${ }^{9}$ Therefore, the location of an isolated hydroxyl in \mathbf{I} and \boldsymbol{I} is thought to be in the ring structure, most likely at $\mathrm{C}-2$.

In a 400 NMR proton analysis. signals for protons derived from the side chain of I at $\bar{\delta} 0.96$ ($3 \mathrm{H} . \mathrm{d}, \mathrm{H}_{3}-21$). $1.11(9 \mathrm{H} . \mathrm{s}$, $\mathrm{H}_{3}-26.27$ and 29). 3.76 (H. d. H-22). 4.07 (H. d. H-23), 5.09 (H. s. H-28) and 5.15 (H. s. $\mathrm{H}-28$) were exactly the same as those for 1 (Table 2). Together with the same chemical shift at $\hat{o} 0.61$ for methyl at C-18, this shows that I has the identical side chain structure to that of 1 . C-21 methyl. C-22R and C-23R diols. $\mathrm{C}-24$ exomethy lene and a tertiary butyl at the end of the side chain. Absorptions for trans A / B ring protons of I were assignable to $\bar{\delta} 0.73$ (3H. s. $\mathrm{H}_{3}-19$), 4.17 (H, br.s, H-3). 2.73 (H, t. H-5) and 2.31 (H. dd. H-7). These chemical shifts are equal to those of 2-deoxycastasterone (4). indicating that I has the same C-3 hyydroxyl and 6-ketone in its A / B ring stnicture as
those of t (Table 2). Taken together, these findings suggested that I carried the same side chain structure as that of $\mathbf{1}$ and the same ring structure as that of 4 . Therefore. I was characterized and found to be 2. (22R. 23R)-3, 22 , 23-trihy droxy-25-metlyyl5α-ergost-24(28)-en-6-one (Fig. 1).

II also showed the same absorptions for protons derived from the side chain and $\mathrm{C}-18$ methyl at $\hat{\delta} 0.96$ (3 H. d. $\mathrm{H}_{3}-21$). $1.11\left(9 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26,27,29\right) .3 .76$ (H, d. H-22), 4.07 (H, d, $\mathrm{H}-23$), 5.09 (H, s. H-28). 5.15 (H. s, H-28) and 0.61 (3H. s, H_{3}-18). indicating that the side chain of $\boldsymbol{I I}$ is also identical to that of 1 . Proton signals for the A / B ring were assignable to δ 0.75 (3H. s. $\left.\mathrm{H}_{3}-19\right) .3 .58$ (H. br. H-3), 2.22 (H. dd. H-5) and $2.31(\mathrm{H}, \mathrm{dd} . \mathrm{H}-7)$ which are superimposed on those of 3 -epi-2-deoxycastasterone (5). showing that the A/B ring structure of $\boldsymbol{\Pi}$ is identical to that 5 . Therefore. II was thought to have the same side chain and ring structure as that of $\mathbf{1}$ and 5 . respectively: Thus. II was determined to be 3. (22R, 23R)-3 $\beta, 22$, 23-trilydroxy-25-methyl-5 α-ergost-24(28)-ent-6-one (Fig. 1).

Biological activity of $\mathbf{2}$ and $\mathbf{3}$ was tested by the rice lamina inclination assay. ${ }^{\text {li }}$ As shown in Figure 2.3 showed almost no activity up to 0.002 ppm , and weak activity at 0.02 ppm . Similarly. 2 exhibited very weak activity up to 0.002 ppm . and moderate activity at 0.02 ppm . Compared to the biological activity of 1 . the activity was approximately $\mathrm{I} / 5$ and $\mathrm{I} / \mathrm{L} 5$ less

Table 1. GC-MS data for 1, I and I indentified for inmature seeds of P. vilgaris.

Compound	Rt^{\prime} on GC	Prominent iont $(m / z$, relative intensity)
$\mathbf{1}$	27.25	$524(\mathrm{M}+, 18), 411(5), 387(17), 356(4), 327(21), 167(44), 138(100,123(54)$
I	16.48	$556(\mathrm{M}+, 59) 541(28), 527(21), 443(9), 359(23), 329(71), 167(42), 138(100), 123(45)$
II	16.75	$556(\mathrm{M}+, 45) 541(21), 527(9), 443(11), 359(26), 329(83), 167(52), 138(100), 123(90)$

${ }^{a}$ Rt: Retention time (min). ${ }^{5}$ The samples are analyzed by a capillary GC-MS as BMB and TMS derivatives.

	1	4	5	I	II
Ring protons					
$\mathrm{H}_{5}-18$	0.61 s				
$\mathrm{H}_{3}-19$	0.75 s	0.73 s	0.75 s	0.73 s	0.75 s
H-2	3.77 br	-	-	-	-
H-3	$4.05 \mathrm{br} . \mathrm{s}$	4.17 br .s	3.58 br.s	4.17 br s	3.58 br.s
H-5	$\begin{gathered} 2.69 \mathrm{dd} \\ (J=4,1 \mathrm{3} \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 2.73 \mathrm{t} \\ (J=8,16 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 2.22 \mathrm{dd} \\ (J=5,14 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 2.73 \mathrm{t} \\ (J=8,16 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 2.22 \mathrm{dd} \\ (J=5,14 \mathrm{~Hz}) \end{gathered}$
H-7	$\begin{gathered} 2.29 \mathrm{dd} \\ (J=5,13 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 2.31 \mathrm{dd} \\ (J=5,14 \mathrm{~Hz}) \end{gathered}$			
Side chain protons					
$\mathrm{H}_{3}-2 \mathrm{I}$	0.96 d	0.85 d	0.85 d	0.96 d	0.96 d
$\mathrm{H}_{5}-26$	-	0.91 d	0.91 d	-	-
$\mathrm{H}_{3}-27$	-	0.95 d	0.95 d	-	-
$\mathrm{H}_{3}-28$	-	0.97 d	0.97 d	-	-
$\mathrm{H}_{9}-26,27,29$	1.11 s	-	-	1.11 s	1.11 s
H-22	$\begin{gathered} 3.76 \mathrm{~d} \\ (j=8 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 3.56 \mathrm{~d} \\ (J=9 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 3.56 \mathrm{~d} \\ (J=9 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 3.76 \mathrm{~d} \\ (j=9 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 3.76 \mathrm{~d} \\ (J=9 \mathrm{~Hz}) \end{gathered}$
H-23	$\begin{gathered} 4.05 \mathrm{~d} \\ (J=8 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 3.72 \mathrm{~d} \\ (J=9 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 3.72 \mathrm{~d} \\ (J=9 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 4.07 \mathrm{~d} \\ (J=9 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 4.07 \mathrm{~d} \\ (j=9 \mathrm{~Hz}) \end{gathered}$
$\mathrm{H}_{\sim}-28$	$\begin{aligned} & 5.09 \mathrm{~s} \\ & 5.15 \mathrm{~s} \end{aligned}$	(($\begin{aligned} & 5.09 \mathrm{~s} \\ & 5.15 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 5.09 \mathrm{~s} \\ & 5.16 \mathrm{~s} \end{aligned}$

Figure 2. Biological activity for 1,2 and 3 in the rice lamina inclination assay.
active for $\mathbf{2}$ and $\mathbf{3}$, respectively
Among the naturally-occurring BRs. castasterone (6) is the most frequently identified $B R$ in the plant kingdom. ${ }^{3}$ Coupled with strong biological activity and a ligh endogenous level of 6. biosynthesis of BRs has been mainly focused on how 6 is biosynthesized in plants. As a result the biosynthetic pathways from campesterol to 6 . namely the early and late $\mathrm{C}-6$ oxidation pathway for $\mathrm{C}_{28}-\mathrm{BRs}$. have been established (Fig 1). It has been previously reported that P. vulgaris contains 6 as a major BRs. ${ }^{[1}$ Additionally, the presence of biosynthetic precursors such as 6 -deoxoCS. 4. 5 for biosynthesis of 6 were demonstrated in p. vulgaris. ${ }^{12}$ Further. a crude enzyme solution prepared from p. vilgaris successfully catalyzed almost all biosynthetic reactions involved in the early and late $\mathrm{C}-6$ oxidation pathway to generate 6 . showing that the biosynthetic pathways for C_{28}-BRs are operating in these plants.

In P vulgaris, 1 is also a major BR whose endogenous level is comparable to that of 6 . The presence of 24-methylene-25-methyl-cholesterol (7) in the Phaseolus plant implies that biosynthetic pathways for synthesizing 1 from 7 are also functional in the plant. In this study. we identified two new $\mathrm{BRs}, \mathbf{2}$ and $\mathbf{3}$ from immature seeds of P. vilgaris. $\mathbf{2}$ and $\mathbf{3}$ are considered to be counterparts of 4 and 5 in the early C-6 oxidation pathway for 6 . Coupled with the presence of 7 and

1. this strongly suggests that a biosynthetic pathway from 7 to 1 wia 3 and 2 . possibly named the early $C-6$ oxidation pathway for 24 -methylene-25-methyl-BRs. is also operating in Phaseolus plants (Fig. 1). It is thus thought that a steady-state level of endogenous BRs is maintained by multiple biosynthetic pathways, at least two. in Phaseolus vulgaris.

Experimental Section

Bioasay. The rice lamina inclination assay was carried out using Cultivar Koshilikari as described Arima et al. ${ }^{12}$

Instnumental Analysis. GC-MS analysis was carried out with JEOL DX303 (EI: 70 eV) fitted with a capillary column (DB-I. J \& W Co.. $-254 \mathrm{~mm} \times 15 \mathrm{~m} .0 .25 \mu \mathrm{~m}$ film thickness). GC condition: 1 mL min ${ }^{-1} \mathrm{He}$: splitless injection mode: $175^{\circ} \mathrm{C}$ for 2 min . thermal gradient $32^{\circ} \mathrm{C} \mathrm{min}^{-1}$ to $275^{\circ} \mathrm{C}$, and then maintained at $275^{\circ} \mathrm{C}$.

400 MHz proton NMR analysis was performed by JEOL FX-400 using TMS as an internal standard.

Aclnowledgments. This work is supported by the grants from the Plant Diversity Research Center of the 21st Century Frontier Research Program (PF06304-03) and KOSEF/ MEST (R01-2007-000-20074-0).

Reference

1. Bishop, G. J.: Yokota, T. Plant Cell Physiol. 2001, 42, 114.
2. Bajgll, A; Tretyn, A. Phytochemistri 2003, 62, 1027
3. Kim, T--W.: Hwang, J.-Y: Kim, Y.-S.: Too, S.-H.; Chang, S. C.; Lee, J. S.; Takatsuto, S.: Kim, S.-K. The Plant Cell 2005, 17, 2397 .
4. Fuliioka, S.; Yokota, T. Ammu. Rev Plant Biol. 2003, 54, 137
5. Bajgul, A.; Tretyn, A. Phytochemistry 2003, 62, 1027.
6. Yokota, S.; Koba, S.: Kim, S.-K. Agric. Biol. Chem. 1987, 51, 1625
7. Joo, S.-H.; Hwang, J.-Y.; Park, C.-H.; Lee, S. C.; Kim, S.-K. Bull. Korean Chem. Soc: 2009, 30, 502.
8. Park, S. C.; Kim, T.-W.; Kim, S.-K. Bull. Korean Chem. Soc. $2000,21,1274$.
9. Kim, T.-W.; Chang, S. C.; Lee, J. S.; Takatsuto, S.; Yokota, T.; Kim S.-K. Plont Physiol. 2004, 135, 1231
10. Arima, M.; Yokota, T.; Takahashi, N. Phytochemistry 1984, 23, 1587.
11. Yokota, S.; Koba, S.; Kim, S.-K. Agric. Biol. Chem. 1987, 51, 1625.
12. Fujioka S. In Brassinosteroids: Steroidal Ptant Homones: Sakurai, A.: Yokota, T.; Clouse, S. D., Eds.: Springer-Verlag: Tokyo, 1999; p 21.
