DOI QR코드

DOI QR Code

Improved Cycle Performance of Sulfur-Doped LiFePO4 Material at High Temperatures

  • Lee, Seung-Byung (Faculty of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University) ;
  • Cho, Seung-Hyun (Faculty of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University) ;
  • Aravindan, Vanchiappan (Faculty of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University) ;
  • Kim, Hyun-Soo (Faculty of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University) ;
  • Lee, Yun-Sung (Faculty of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University)
  • Published : 2009.10.20

Abstract

Pristine and sulfur-doped (LiFe$PO_{3.98}S_{0.03}$) lithium iron phosphates were synthesized by a sol-gel method. The XRD pattern of the prepared materials suggested an orthorhombic structure with a Pnma space group and an absence of impurities. The Li/LiFe$PO_4$ or LiFe$PO_{3.98}S_{0.03}$ cells were employed for cycling studies at various temperatures (25, 50 and $60\;{^{\circ}C}$). In all cases, the Li/LiFe$PO_{3.98}S_{0.03}$ cell showed an improved performance with a stable discharge behavior of ~155 mA$hg^{-1}$. Nevertheless, pristine LiFeP$O_4$ cells presented poor discharge behavior at elevated temperatures, especially $60\;{^{\circ}C}$.

Keywords

References

  1. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. https://doi.org/10.1149/1.1837571
  2. Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem. Solid-State Lett. 2001, 4, A170. https://doi.org/10.1149/1.1396695
  3. Yang, S.; Song, Y.; Zavalij, P. Y.; Whittingham, M. S. Electrochem Commun. 2002, 4, 239.
  4. Croce, F.; Epifanio, A. D.; Hassou, J. Electrochem. Solid-State Lett. 2002, 5, A47. https://doi.org/10.1149/1.1449302
  5. Dominko, R.; Goupil, J. M.; Bele, M. J. Electrochem. Soc. 2005, 152, A843. https://doi.org/10.1149/1.2116727
  6. Spong, A. D.; Vitins, G.; Owen, J. R. J. Elctrochem. Soc. 2005, 152, A2376. https://doi.org/10.1149/1.2120427
  7. Sides, C. R.; Croce, F.; Young, V. Y. Electrochem. Solid-State Lett. 2005, 8, A484. https://doi.org/10.1149/1.1999916
  8. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123. https://doi.org/10.1038/nmat732
  9. Wang, G. X.; Bewlay, S.; Yad, J. Electrochem. Solid-State Lett. 2002, 7, A503. https://doi.org/10.1149/1.1819867
  10. Andersson, A. S.; Kalska, B.; Thomas, J. O. Solid State Ionics 2000, 130, 41. https://doi.org/10.1016/S0167-2738(00)00311-8
  11. Andersson, A. S.; Thomas, J. O. J. Power Sources 2001, 97-98, 508. https://doi.org/10.1016/S0378-7753(01)00728-5
  12. Delacourt, C.; Poizot, P.; Levasseur, S. Electrochem. Solid-State Lett. 2006, 9, A352 https://doi.org/10.1149/1.2201987
  13. Yang, J. S.; Xu, J. J. J. Electrochem. Soc. 2006, 153, A716.
  14. Sanchez, M. A.; Brito, G. E.; Fantini, M. C. Solid State Ionics 2006, 177, 497. https://doi.org/10.1016/j.ssi.2005.11.018
  15. Guo, Z. P.; Liu, H.; Bewlay, S. J. New Mater. Electrochem. Syst. 2003, 6, 259.
  16. Lee, S. B.; Cho, S. H.; Cho, S. J.; Park, G. J.; Park, S. H.; Lee, Y. S. Electrochem. Commun. 2008, 10, 1219. https://doi.org/10.1016/j.elecom.2008.06.007
  17. Liao, X. Z.; He, Y. S.; Ma, Z. F. J. Power Sources 2007, 174, 720. https://doi.org/10.1016/j.jpowsour.2007.06.146
  18. Sun, Y. K.; Oh, S. W.; Yoon, C. S.; Bang, H. J.; Prakash, J. J. Power Sources 2006, 161, 19. https://doi.org/10.1016/j.jpowsour.2006.03.085
  19. Rho, Y. H.; Nazar, L. F.; Perry, L.; Ryan, D. J. Electrochem. Soc. 2007, 154, A283. https://doi.org/10.1149/1.2433539
  20. Park, S. H.; Sun, Y. K.; Park, K. S.; Nahm, K. S.; Lee, Y. S.; Yoshio, M. Electrochimica Acta 2002, 47, 1721. https://doi.org/10.1016/S0013-4686(02)00023-3
  21. Xu, Z.; Xu, L.; Lai, Q. Mater. Res. Bull. 2007, 42, 883. https://doi.org/10.1016/j.materresbull.2006.08.018
  22. Su, Z.; Lu, Z. W.; Gao, X. P.; Shen, P. W.; Liu, X. J.; Wang, J. Q. J. Power Sources 2009, 189, 411. https://doi.org/10.1016/j.jpowsour.2008.07.069
  23. http://en.wikipedia.org/wiki/Ionic_radius
  24. Myung, S. T.; Komaba, S.; Kumagai, N. J. Electrochem. Soc. 2002, 149, A1349. https://doi.org/10.1149/1.1504453
  25. Koltypin, M.; Aurbach, D.; Nazar, L.; Ellis, B. J. Power Sources 2007, 174, 1241. https://doi.org/10.1016/j.jpowsour.2007.06.045
  26. Koltypin, M.; Aurbach, D.; Nazar, L.; Ellis, B. Electrochem. Solid-State Lett. 2007, 10, A40. https://doi.org/10.1149/1.2403974
  27. Moshkovich, M.; Cojocaru, M.; Gottlieb, H. E.; Aurbach, D. J. Electroanal. Chem. 2001, 497, 84. https://doi.org/10.1016/S0022-0728(00)00457-5

Cited by

  1. cathode material for lithium-ion batteries vol.4, pp.2, 2011, https://doi.org/10.1039/C0EE00029A
  2. Electrochemical performance of LiFePO4/C doped with F synthesized by carbothermal reduction method using NH4F as dopant vol.16, pp.4, 2012, https://doi.org/10.1007/s10008-011-1564-8
  3. as High Energy Density Electroactive Material for Hybrid Supercapacitor Applications vol.9, pp.3, 2014, https://doi.org/10.1002/asia.201301289
  4. Cathodes by Fe Substitution with Off-Stoichiometry vol.159, pp.7, 2012, https://doi.org/10.1149/2.051207jes
  5. Synthesis of fluorine-doped α-Fe2O3 nanorods toward enhanced lithium storage capability vol.28, pp.6, 2009, https://doi.org/10.1088/1361-6528/aa53b3
  6. Preparation and Electrochemical Properties of the Spongelike Melamine Formaldehyde-Poly(vinyl alcohol)/LiFePO4 Porous Composite as the Lithium-Battery Cathode vol.58, pp.2, 2009, https://doi.org/10.1021/acs.iecr.8b03599
  7. Two Cathodes in One for Lithium‐Ion Batteries: Voltammetric Study of a Composite Cathode of Sulfur and LiFePO 4 vol.5, pp.20, 2009, https://doi.org/10.1002/slct.202001292
  8. High‐Performing Li‐Ion Battery with “Two Cathodes in One” of Sulfur and LiFePO 4 by Strategies of Mitigation of Polysulfide Shuttling vol.4, pp.2, 2009, https://doi.org/10.1002/batt.202000238
  9. Shape Matters: The Effect of Particle Morphology on the Fast-Charging Performance of LiFePO4/C Nanoparticle Composite Electrodes vol.6, pp.37, 2009, https://doi.org/10.1021/acsomega.1c03432