DOI QR코드

DOI QR Code

Novel Superabsorbent Hydrogel Based on Natural Hybrid Backbone: Optimized Synthesis and its Swelling Behavior

  • Published : 2009.11.20

Abstract

The synthesis of a novel superabsorbent hydrogel with natural hybrid backbone via graft copolymerization of acrylamide (AAm) onto kappa-carrageenan (kC, as a polysaccharide) and gelatin (as a protein) under classic thermal conditions is described. The Taguchi method as a strong experimental design tool was used for synthesis optimization. A series of hydrogels were synthesized by proposed conditions of Qualitek-4 Software. Considering the results of 9 trials according to analysis of variance (ANOVA), optimum conditions were proposed. The swelling behavior of optimum hydrogel was measured in various solutions with pH values ranging from 1 to 13. In addition, swelling kinetics, swelling in various organic solvents, various salt solutions and On–Off switching behavior were investigated. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetrical analysis (TGA). Surface morphology of the synthesized hydrogels was assessed by scanning electron microscope (SEM).

Keywords

References

  1. Hennink, W. E.; van Nostrum, C. F. Adv. Drug Deliv. Rev. 2002, 54, 13 https://doi.org/10.1016/S0169-409X(01)00240-X
  2. Lee, K. Y.; Mooney, D. J. Chem. Rev. 2001, 101, 1869 https://doi.org/10.1021/cr000108x
  3. Hoffman, A. S. Adv. Drug Deliv. Rev. 2002, 43, 3
  4. Nguyen, K. S.; West, J. L. Biomaterials 2002, 23, 4307 https://doi.org/10.1016/S0142-9612(02)00175-8
  5. Savoji, M. T.; Pourjavadi, A. Polym. Eng. Sci. 2006, 46, 1778 https://doi.org/10.1002/pen.20646
  6. Pourjavadi, A; Amini-Fazl, M. S.; Barzegar, S. J. Appl. Polym. Sci. 2008, 107, 2970 https://doi.org/10.1002/app.27466
  7. Pourjavadi, A; Ghasemzadeh, H.; Hosseinzadeh, H. e-Polymers 2004, 27
  8. Pourjavadi, A.; Harzandi, A. M.; Hosseinzadeh, H. Eur. Poly. J. 2004, 40, 1363 https://doi.org/10.1016/j.eurpolymj.2004.02.016
  9. Kirk, R. E.; Othmer, D. F. In Encyclopedia of Chemical Technology; Kroschwitz, J. I.; Howe-Grant, M., Eds.; Wiley: New York, U. S. A., 1992; Vol. 4, p 942
  10. Ikada, Y.; Tabata, Y. Adv. Drug Deliv. Rev. 1998, 31, 287 https://doi.org/10.1016/S0169-409X(97)00125-7
  11. Yamamoto, M.; Ikada, Y.; Tabata, Y. J. Biomater. Sci. Polym. Ed. 2001, 12, 77 https://doi.org/10.1163/156856201744461
  12. Kuijpers, A. J.; Wachem, P. B. V.; Luyn, M. J. V.; Plantinga, J. A.; Engbers, G. H. J. Biomed. Mater. Res. 2000, 51, 136 https://doi.org/10.1002/(SICI)1097-4636(200007)51:1<136::AID-JBM18>3.0.CO;2-W
  13. Yao, C. H.; Liu, B. S.; Hsu, S. H.; Chen, Y. S.; Tsai, C. C. J. Biomed. Mater. Res. 2004, 69, 709
  14. Johnson, R. A. In Miller and Freund's Probability and Statistics for Engineers; PHI, 2001
  15. Garcia-Diaz, A.; Philips, D. T. In Principles of Experimental Design and Analysis; Chapman & Hall, 1995
  16. Douglas, C. M. In Design and Analysis of Experiments; Wiley; New York, U. S. A., 2001
  17. Pourjavadi, A.; Harzandi, A. M.; Hossenzadeh, H. Eur. Polym. J. 2004, 40, 1363 https://doi.org/10.1016/j.eurpolymj.2004.02.016
  18. Pourjavadi, A.; Bardajee, G. R.; Soleyman, R. J. Appl. Polym. Sci. 2009, 112, 2625 https://doi.org/10.1002/app.29831
  19. Pourjavadi, A.; Soleyman, R.; Bardajee, G. R. Starch/St$\ddot{a}$rke 2008, 60, 467 https://doi.org/10.1002/star.200700706
  20. Bardajee, G. R.; Pourjavadi, A.; Soleyman, R.; Sheikh, N. Nucl. Instr. and Meth. in Phys. Res. B 2008, 266, 3932 https://doi.org/10.1016/j.nimb.2008.06.023
  21. Pourjavadi, A.; Amini-fazl, M. S. Polymer Int. 2007, 56, 283 https://doi.org/10.1002/pi.2165
  22. Pourjavadi, A.; Harzandi, A. M.; Hosseinzadeh, H. Macromolecular Research 2005, 13, 403 https://doi.org/10.1007/BF03218473
  23. Omidian, H.; Hashemi, S. A.; Sammes, P. G.; Meldrum, I. Polymer 1998, 39, 6697 https://doi.org/10.1016/S0032-3861(98)00095-0
  24. Flory P. J. In Principles of Polymer Chemistry; Cornell University Press: New York, Ithaca, 1953
  25. Pourjavadi, A.; Hosseinzadeh, H.; Mazidi, R. J. App. Poly. Sci. 2005, 98, 255 https://doi.org/10.1002/app.22162
  26. Pass, G.; Philips, G. O.; Wedlock, D. J. Macromolecules 1977, 10, 197 https://doi.org/10.1021/ma60055a039
  27. Jianqi, F.; Lixia, G. J. Polym. Mater. 2002, 19, 103
  28. Grulke, E. A. In Polymer Handbook; Brandrup, J.; Immergut, E. H.; Grulke, E. A., Eds.; Wiley: New York, U. S. A. 1999; Vol. 2, p 675
  29. Zohuriaan-Mehr, M. J.; Motazedi, Z.; Kabiri, K.; Ershad-Langroudi, A.; Allahdadi, I. J. Appl. Polym. Sci. 2006, 102, 5667 https://doi.org/10.1002/app.25033

Cited by

  1. Marine Polysaccharides in Pharmaceutical Applications: An Overview vol.8, pp.9, 2010, https://doi.org/10.3390/md8092435
  2. Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone vol.18, pp.3, 2011, https://doi.org/10.1007/s10965-010-9423-3
  3. -poly(acrylamide) vol.64, pp.3, 2011, https://doi.org/10.1002/star.201100077
  4. -poly(acrylamide) vol.64, pp.10, 2012, https://doi.org/10.1002/star.201200001
  5. Novel potentially biocompatible nanoporous hydrogel based on poly ((2-dimethylaminoethyl) methacrylate) grafted onto salep: synthesis, swelling behavior and drug release study vol.20, pp.1, 2013, https://doi.org/10.1007/s10965-012-0067-3
  6. A perspective on the growth of chemometrics in Iran: a glance into activities between 2005 and 2012 vol.27, pp.10, 2013, https://doi.org/10.1002/cem.2531
  7. Effect of chemical composition on the response of zwitterionic glucose sensitive hydrogels studied by design of experiments vol.131, pp.17, 2014, https://doi.org/10.1002/app.40667
  8. Preparation of bentonite-g-poly(acrylate-co-acrylamide) superabsorbent polymer composite for agricultural applications: Optimization and characterization vol.57, pp.6, 2015, https://doi.org/10.1134/S1560090415060081
  9. Voltammetric Determination of Captopril on a Glassy Carbon Electrode Modified with Copper Metal-organic Framework vol.29, pp.11, 2017, https://doi.org/10.1002/elan.201700384
  10. Molecular structure of PANI and its homologue PANI–PEO2000 catalyzed by Maghnite-H+ (Algerian MMT): synthesis, characterization and physical and chemical properties pp.1436-2449, 2018, https://doi.org/10.1007/s00289-018-2620-7
  11. Polymer Hydrogels Formulated with Various Cross-Linkers for Food-Surface Application to Control Listeria monocytogenes vol.32, pp.5, 2009, https://doi.org/10.13103/jfhs.2017.32.5.443
  12. Molecular Mechanisms Underlying Cancer Preventive and Therapeutic Potential of Algal Polysaccharides vol.25, pp.11, 2019, https://doi.org/10.2174/1381612825666190425155126
  13. Stimuli-Responsive Hydrogel Based on Poly((2-Dimethylamino)Ethyl Methacrylate) Grafted onto Sodium Alginate as a Drug Delivery System vol.61, pp.5, 2009, https://doi.org/10.1134/s1560090419050099
  14. Two Benthic Diatoms, Nanofrustulum shiloi and Striatella unipunctata, Encapsulated in Alginate Beads, Influence the Reproductive Efficiency of Paracentrotus lividus by Modulating the Gene Expression vol.19, pp.4, 2021, https://doi.org/10.3390/md19040230
  15. Thermal degradation kinetic of poly(acrylamide-co-sodium acrylate) hydrogel applying isoconversional methods vol.146, pp.6, 2009, https://doi.org/10.1007/s10973-020-09899-y