DOI QR코드

DOI QR Code

Heterojunction of FeOOH and TiO2 for the Formation of Visible Light Photocatalyst

  • Published : 2009.11.20

Abstract

FeOOH/$TiO_2$, a heterojunction structure between FeOOH and $TiO_2$, was prepared by covering the surface of the $\sim$100-nm-sized FeOOH particles with Degussa P25 by applying maleic acid as an organic linker. Under visible light irradiation (${\lambda}{\geq}$ 420 nm), FeOOH/$TiO_2$ showed a notable photocatalytic activity in removal of gaseous 2-propanol and evolution of $CO_2$. It was found that FeOOH reveals a profound absorption in the spectral range of 400 - 550 nm, and its valence band (VB) level is located relatively lower than that of $TiO_2$. The considerable photocatalytic efficiency of the FeOOH/$TiO_2$ under visible light irradiation was therefore deduced to be caused by the hole transfer between the VB of FeOOH and $TiO_2$.

Keywords

References

  1. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637 https://doi.org/10.1038/277637a0
  2. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69 https://doi.org/10.1021/cr00033a004
  3. Chen, M.-L.; Bae, J.-S.; Oh, W.-C. Bull. Korean Chem. Soc. 2006, 27, 1423 https://doi.org/10.5012/bkcs.2006.27.9.1423
  4. Ou, Y.; Lin, J.; Fang, S.; Liao, D. Catal. Commun. 2007, 8, 936 https://doi.org/10.1016/j.catcom.2006.08.025
  5. Lee, S. H.; Kim, I. Y.; Kim, T. W.; Hwang, S.-J. Bull. Korean Chem. Soc. 2008, 29, 817 https://doi.org/10.5012/bkcs.2008.29.4.817
  6. Huang, Y.; Zheng, Z.; Ai, Z.; Zhang, L.; Fan, X.; Zou, Z. J. Phys. Chem. B 2006, 110, 19323 https://doi.org/10.1021/jp064135o
  7. Ding, Z.; Lu, G. Q.; Greenfield, P. F. J. Phys. Chem. B 2000, 104, 4815 https://doi.org/10.1021/jp993819b
  8. Song, K. Y.; Park, M. K.; Kwon, Y. T.; Lee, H. W.; Chung, W. J.; Lee, W. I. Chem. Mater. 2001, 13, 2349 https://doi.org/10.1021/cm000858n
  9. Zhao, W.; Ma, W.; Chen, C.; Zhao, J.; Shuai, Z. J. Am. Chem. Soc. 2004, 126, 13574 https://doi.org/10.1021/ja046390x
  10. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269 https://doi.org/10.1126/science.1061051
  11. Sakthivel, S.; Kisch, H. ChemPhysChem 2003, 4, 487 https://doi.org/10.1002/cphc.200200554
  12. Kumar, A.; Mathur, N. Appl. Catal. A 2004, 275, 189 https://doi.org/10.1016/j.apcata.2004.07.033
  13. Chai, S. Y.; Kim, Y. J.; Lee, W. I. J. Electroceram. 2006, 17, 909 https://doi.org/10.1007/s10832-006-9073-3
  14. Ho, W.; Yu, J. C.; Lin, J.; Yu, J.; Li, P. Langmuir 2004, 20, 5865 https://doi.org/10.1021/la049838g
  15. Ho, W.; Yu, J. C. J. Mol. Catal. A: Chem. 2006, 247, 268 https://doi.org/10.1016/j.molcata.2005.11.057
  16. Bessekhouad, Y.; Chaoui, N.; Trzpit, M.; Ghazzal, N.; Robert, D.; Weber, J. V. J. Photochem. Photobiol. A 2006, 183, 218 https://doi.org/10.1016/j.jphotochem.2006.03.025
  17. Song, H.; Jiang, H.; Liu, X.; Meng, G. J. Photochem. Photobiol. A 2006, 181, 421 https://doi.org/10.1016/j.jphotochem.2006.01.001
  18. Pal, B.; Sharon, M.; Nogami, G. Mater. Chem. Phys. 1999, 59, 254 https://doi.org/10.1016/S0254-0584(99)00071-1
  19. Yin, H.; Wada, Y.; Kitamura, T.; Sakata, T.; Mori, H.; Yanagida, S. Chem. Lett. 2001, 30, 334
  20. Kumar, A.; Jain, A. J. Mol. Catal. A: Chem. 2001, 165, 265 https://doi.org/10.1016/S1381-1169(00)00435-0
  21. Chakraborty, A. K.; Chae, S. Y.; Lee, W. I. Bull. Korean Chem. Soc. 2008, 29, 494 https://doi.org/10.5012/bkcs.2008.29.2.494
  22. Liu, J.; Yang, R.; Li, S. Rare Metals 2006, 25, 636 https://doi.org/10.1016/S1001-0521(07)60005-9
  23. Jang, J. S.; Ji, S. M.; Bae, S. W.; Son, H. C.; Lee, J. S. J. Photochem. Photobiol. A 2007, 188, 112 https://doi.org/10.1016/j.jphotochem.2006.11.027
  24. Yu, X.; Wu, Q.; Jiang, S.; Guo, Y. Mater. Charact. 2006, 57, 333 https://doi.org/10.1016/j.matchar.2006.02.011
  25. Tristao, J. C.; Magalhaes, F.; Corio, P.; Sansiviero, M. C. J. Photochem. Photobiol. A 2006, 181, 152 https://doi.org/10.1016/j.jphotochem.2005.11.018
  26. Ge, L.; Xu, M.; Fang, H. J. Mol. Catal. A: Chem. 2006, 258, 68 https://doi.org/10.1016/j.molcata.2006.05.026
  27. Kang, M. G.; Han, H. E.; Kim, K. J. J. Photochem. Photobiol. A 1999, 125, 119 https://doi.org/10.1016/S1010-6030(99)00092-1
  28. Jang, J. S.; Li, W.; Oh, S. H.; Lee, J. S. Chem. Phys. Lett. 2006, 425, 278 https://doi.org/10.1016/j.cplett.2006.05.031
  29. Serpone, N.; Maruhamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H. J. Photochem. Photobiol. A 1995, 85, 247 https://doi.org/10.1016/1010-6030(94)03906-B
  30. Xu, Y.; Schoonen, M. Am. Mineral. 2000, 85, 543
  31. Schoonen, A. A.; Cohn, C. A.; Roemer, E.; Laffers, R.; Simon, S. R.; O'Riordan, T. Rev. Mineral. Geochem. 2006, 64, 179 https://doi.org/10.2138/rmg.2006.64.7
  32. Gr$\ddot{a}$tzel, M. Nature 2001, 414, 338 https://doi.org/10.1038/35104607
  33. Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735 https://doi.org/10.1021/cr00035a013
  34. Ardizzone, S.; Formaro, L. Surface Technol. 1985, 26, 269 https://doi.org/10.1016/0376-4583(85)90124-4
  35. Ardizzone, S.; Formaro, L.; Sivieri, E.; Burriesci, N.; Petrera, M. J. Chem. Soc. Faraday Trans.1 1983, 79, 2449 https://doi.org/10.1039/f19837902449
  36. Liu, X,; Qiu, G.; Yan, A.; Wang, Z.; Li, X. J. Alloys Compd. 2007, 433, 216 https://doi.org/10.1016/j.jallcom.2006.06.029
  37. Gao, B.; Kim, Y. J.; Chakraborty, A. K.; Lee, W. I. Appl. Catal. B: Environ. 2008, 83, 202 https://doi.org/10.1016/j.apcatb.2008.02.017
  38. Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R. J. Catal. 2000, 191, 192 https://doi.org/10.1006/jcat.1999.2776

Cited by

  1. Preparation and characterization of WO3/Bi3O4Cl nanocomposite and its photocatalytic behavior under visible light irradiation vol.106, pp.1, 2012, https://doi.org/10.1007/s11144-012-0423-7
  2. Double-heterojunction structure of SbxSn1-xO2/TiO2/CdSe for efficient decomposition of gaseous 2-propanol under visible-light irradiation vol.2, pp.2, 2012, https://doi.org/10.1039/C1RA00551K
  3. Efficient Decomposition of Organic Pollutants Over In2O3/TiO2 Nanocomposite Photocatalyst Under Visible Light Irradiation vol.23, pp.2, 2012, https://doi.org/10.1007/s10876-011-0425-z
  4. pigments vol.20, pp.3, 2013, https://doi.org/10.4150/KPMI.2013.20.3.210
  5. Heterojunction Composites Under UV-Visible Irradiation vol.89, pp.5, 2013, https://doi.org/10.1111/php.12136
  6. for Efficient Visible-Light Photocatalysis vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.913
  7. Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective vol.44, pp.21, 2015, https://doi.org/10.1039/C5CS00380F
  8. Novel Visible-Light-Driven Photocatalyst Co3O4/FeWO4 for Efficient Decomposition of Organic Pollutants pp.1572-8862, 2017, https://doi.org/10.1007/s10876-017-1302-1
  9. O/γ-FeOOH heterojunction solar cells using electrodeposition vol.7, pp.4, 2014, https://doi.org/10.7567/APEX.7.045501
  10. Photocatalytic Behavior of Water-Based Styrene-Acrylic Coatings Containing TiO2 Sensitized with Metal-Phthalocyanine Tetracarboxylic Acids vol.7, pp.12, 2017, https://doi.org/10.3390/coatings7120229
  11. Visible-light Photocatalytic Activity of BiOCl/Bi3O4Cl Nanocomposites vol.31, pp.7, 2009, https://doi.org/10.5012/bkcs.2010.31.7.1941
  12. Charge transfer between biogenic jarosite derived Fe 3+ and TiO 2 enhances visible light photocatalytic activity of TiO 2 vol.54, pp.None, 2009, https://doi.org/10.1016/j.jes.2015.11.038
  13. Role of chelating compounds towards thermal resistance property of industrial grade goethite vol.50, pp.2, 2009, https://doi.org/10.1108/prt-03-2020-0021
  14. Magnetic photocatalysts from δ-FeOOH and TiO2 and application in reactions for degradation of methylene blue and paracetamol with UV-C and sunlight vol.28, pp.31, 2009, https://doi.org/10.1007/s11356-021-13727-7
  15. Enhancing the photocatalytic efficiency of the BiOCl/Bi3O4Cl composite modified with WO3 for environmental purification under visible light vol.45, pp.37, 2021, https://doi.org/10.1039/d1nj02825a
  16. Preparation and characterization of novel microencapsulated phase change materials with SiO2/FeOOH as the shell for heat energy storage and photocatalysis vol.43, pp.None, 2009, https://doi.org/10.1016/j.est.2021.103251