DOI QR코드

DOI QR Code

Effect of Coordination Environment on the Photophysical Properties of Luminescent Europium(III) Complexes

  • Baek, Nam-Seob (IT Convergence Technology Research Lab., ETRI) ;
  • Kim, Yong-Hee (IT Convergence Technology Research Lab., ETRI) ;
  • Lee, Dong-Hyun (Center for Advanced Photovoltaic Materials (ITRC) and Department of Advanced Materials Chemistry,Korea University) ;
  • Seo, Kang-Deuk (Center for Advanced Photovoltaic Materials (ITRC) and Department of Advanced Materials Chemistry,Korea University) ;
  • Kim, Hwan-Kyu (Center for Advanced Photovoltaic Materials (ITRC) and Department of Advanced Materials Chemistry,Korea University)
  • Published : 2009.07.20

Abstract

A series of Eu(III) complexes with various neutral ligands (2,2’:6’,2"-terpyridine (T), diglyme (D), 1N-(2-dimethylamino) ethyl)-1N, 2N, 2N-trimethylethane-1,2-diamine (PT), di-(2-picolyl)-amine derivative (HT), and multidentate terpyridine derivative (DT)) were synthesized to investigate the effect of coordination environment on the sensitized luminescence of Eu(III) complexes. The nine coordination sites of the $Eu^{3+}$ ion are occupied by three bidentate carboxylate moieties and one neutral ligand. The highest emission intensity is obtained for $Eu^{3+}$- $[NA]_3$ (PT), due to the difference in energy transfer efficiency and symmetry of the first coordination sphere of $Eu^{3+}$ ion. But, the lowest emission intensity is obtained for $Eu^{3+}$-$[NA]_3$(T). Terpyridine may not play an important role antenna for photosensitizing $Eu^{3+}$ ion. It could be attributed to the weak spectral overlap integral J value between its phosphorescence band and $Eu^{3+}$ion absorption band. Therefore, different coordination environment of $Ln^{3+}$ ion play an important role in providing sensitization of lanthanide ion emission.

Keywords

References

  1. Kido, J.; Okmoto, Y. Chem. Rev. 2002, 102, 2357 https://doi.org/10.1021/cr010448y
  2. Sun, P. P.; Duan, J. P.; Liu, J. J.; Cheng, C. H. Adv. Funct. Mater. 2003, 13, 683 https://doi.org/10.1002/adfm.200304378
  3. Oyamada, T.; Kawamura, Y.; Koyama, T.; Sasabe, H.; Adachi, C. Adv. Mater. 2004, 16, 1082 https://doi.org/10.1002/adma.200400090
  4. Kim, H. K.; Roh, S.-G.; Hong, K. S.; Ka, J.-W.; Baek, N. S.; Oh, J. B.; Nah, M.-K.; Cha, Y. H.; Ko, J. Macromol. Res. 2003, 11, 133
  5. Roh, S.-G.; Baek, N. S.; Kim, Y. H.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28(8), 1249 https://doi.org/10.5012/bkcs.2007.28.8.1249
  6. Kuriki, K.; Koike, Y. Chem. Rev. 2002, 102, 2347 https://doi.org/10.1021/cr010309g
  7. Baek, N. S.; Kim, Y. H.; Roh, S.-G.; Kwak, B. K.; Kim, H. K. Adv. Funct. Mater. 2006, 16, 1873 https://doi.org/10.1002/adfm.200500835
  8. Richardson, F. S. Chem. Rev. 1982, 82, 541 https://doi.org/10.1021/cr00051a004
  9. Baek, N. S.; Roh, S.-G.; Kim, Y. H.; Nah, M.-K.; Kim, H. K. J. Nonlinear Opt. Phys. Mater. 2004, 13, 627 https://doi.org/10.1142/S0218863504002377
  10. Kim, Y. H.; Baek, N. S.; Oh, J. B.; Nah, M. K.; Roh, S.-G.; Song, B. J.; Kim, H. K. Macromol. Res. 2007, 15, 272 https://doi.org/10.1007/BF03218787
  11. Baek, N. S.; Nah, M.-K.; Kim, Y. H.; Kim, H. K. J. Lumine. 2007, 127, 707 https://doi.org/10.1016/j.jlumin.2007.03.020
  12. Oh, J. B.; Nah, M. K.; Kim, Y. H.; Kang, M. S.; Ka, J. W.; Kim, H. K. Adv. Funct. Mater. 2007, 17(3), 413 https://doi.org/10.1002/adfm.200600451
  13. Baek, N. S.; Kwak, B. K.; Kim, Y. H.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28(8), 1256 https://doi.org/10.5012/bkcs.2007.28.8.1256
  14. Armarego, W. L. F.; Perrin, D. D. In Purification of Laboratory Chemicals, 4th edition; Pergamon Press: Oxford, U. K., 1997
  15. Baek, N. S.; Nah, M.-K.; Kim, Y. H.; Roh, S.-G.; Kim, H. K. Bull. Korean Chem. Soc. 2004, 25, 443 https://doi.org/10.1007/s11814-008-0075-5
  16. Roh, S.-G.; Nah, M.-K.; Oh, J. B.; Baek, N. S.; Kim, H. K. Polyhedron 2005, 24, 137 https://doi.org/10.1016/j.poly.2004.10.014
  17. Baek, N. S.; Kim, Y. H.; Kim, H. K. Bull. Korean Chem. Soc. 2006, 27, 1729 https://doi.org/10.5012/bkcs.2006.27.11.1729
  18. Klink, S. I.; Grave, L.; Reinhoudt, D. N.; van Veggel, F. C. J. M.; Werts, M. H. V.; Guerts, F. A. J.; Hofstraat, J. W. A. J. Phys. Chem. A 2000, 104, 5457 https://doi.org/10.1021/jp994286+
  19. Werts, M. H.; Jukes, R. T. F.; Verhoeven, J. W. Phys. Chem. Chem. Phys. 2002, 4, 1542 https://doi.org/10.1039/b107770h
  20. Steemers, F. J.; Verboom, W.; Reinhoudt, D. N.; van der Tol, E. B.; Verhoeven, J. W. J. Am. Chem. Soc. 1995, 117, 9408 https://doi.org/10.1021/ja00142a004
  21. Martin, K.; Michi, J. In Excited States and Photochemistry of Organic Molecules, John Wiley & Sons: New York, U. S. A., 1995; p 270
  22. Crosby, G. A.; Whan, R. E.; Alire, R. M. J. Chem. Phys. 1961, 34, 743 https://doi.org/10.1063/1.1731670

Cited by

  1. -1-Naphthoate Complex with N-Donor Ligand as a New White Luminescent Single Molecular Material vol.2, pp.1, 2013, https://doi.org/10.5857/RCP.2013.2.1.034
  2. complexes vol.17, pp.24, 2015, https://doi.org/10.1039/C5CP01392E
  3. Hierarchical self-assembly of squaraine and silica nanoparticle functionalized with cationic coordination sites for near infrared detection of ATP vol.7, pp.2045-2322, 2017, https://doi.org/10.1038/srep43491
  4. Link between optical spectra, crystal-field parameters, and local environments of Eu $ ^{3+}$ ions in Eu $ _{2}$ O $ _{3}$ -doped sodium disilicate glass vol.84, pp.10, 2009, https://doi.org/10.1103/physrevb.84.104206
  5. Electronic properties of ferrocenyl-terpyridine coordination complexes: An electrochemical and X-ray photoelectron spectroscopic approach vol.482, pp.None, 2009, https://doi.org/10.1016/j.ica.2018.04.013