DOI QR코드

DOI QR Code

Dehydrodivanillin: Multi-dimensional NMR Spectral Studies, Surface Morphology and Electrical Characteristics of Thin Films

  • Gaur, Manoj (St. Stephen's College, University of Delhi) ;
  • Lohani, Jaya (Solid State Physics Laboratory) ;
  • Balakrishnan, V.R. (Solid State Physics Laboratory) ;
  • Raghunathan, P. (National Brain Research Centre, Manesar,) ;
  • Eswaran, S.V. (St. Stephen's College, University of Delhi)
  • Published : 2009.12.20

Abstract

The complete structural characterization of dehydrodivanillin, an important natural product of interest to the food, cosmetics and aroma industries, has been carried out using multi-dimensional NMR spectroscopic techniques, and its previously $reported^{13}$C-NMR values have been reassigned. Dense and granular thin films of dehydrodivanillin have been grown by sublimation under high vacuum and studied using Scanning Electron Microscopy (SEM), electrical and optical techniques. The transmittance spectra of the films indicate a wide optical band gap of more than 3 eV. Typical J-V characteristics of Glass/ITO/dehydrodivanillin/Al structure exhibited moderate current densities ${\sim}10^{-4}\;A/cm^2$ at voltages > 25 V with an appreciable SCLC mobility of the order of $10^{-6}\;cm^2$/V-s.

Keywords

References

  1. Katahira, R.; Nakatsubo, F. J. Wood. Sci. 2001, 47, 378 https://doi.org/10.1007/BF00766789
  2. Hergert, H. J. Org. Chem. 1960, 405 https://doi.org/10.1021/jo01073a026
  3. Ikemoto, T.; Nakatsugawa, H.; Taira, A. Jpn. Kokai. Tokkyo. Koho. 1995, JP 93-347851
  4. Egawa, Y.; Hanzan, A.; Sato, N.; Ikemoto, T. Jpn. Kokai. Tokkyo. Koho. 2000, JP 98-259781
  5. Reiss, I.; Gatfield, I. L.; Krammer, G.; Clere, A.; Kindel, G. U. S. Patent 0286237, 2006
  6. Medina, A.; Ferreira, L.; Tadros, S.; Sizensky, J.; Fregeolle, M.; Blakeney, A.; Toukhy, M. Proceedings of SPIE 1996, 448
  7. Blakeney, A. J.; Medina, A. N.; Toukhy, M. A.; Ferreira, L.; Tadros, S. U. S. Patent 5541033, 1996
  8. Yamamoto, H.; Hoshino, T.; Uchiyama, T. Biosci. Biotechnol. Biochem. 1999, 63, 390 https://doi.org/10.1271/bbb.63.390
  9. Elbs, K.; Lerch, H. J. Prakt. Chem. 1916, 93, 1 https://doi.org/10.1002/prac.19160930101
  10. Poplavskyya, D.; Nelson, J. J. Appl. Phy. 2003, 93, 341 https://doi.org/10.1063/1.1525866
  11. Sun, S. S.; Sariciftci, N. S. Organic Photovoltaics: Mechanisms, Materials, and Devices; CRC Press: Florida, U. S. A., 2005
  12. Andraud, C.; Brotin, T.; Garcin, C.; Pellé, F.; Coldner, P.; Bigot, B.; Collet, A. J. Am. Chem. Soc. 1994, 116, 2094 https://doi.org/10.1021/ja00084a055
  13. NMR spectra recorded by us at 300 MHz and 400 MHz in DMSO-d6 did not show the expected meta coupling
  14. Russell, W. R.; Scobbie, L.; Chesson, A. Bioorg. Med. Chem. 2005, 13, 2537 https://doi.org/10.1016/j.bmc.2005.01.047
  15. Mott, N. F.; Gurney, R. W. In the Electronic Processes in Ionic Crystals; Clarendon Press: New York, 1948 (Reprinted 1964)
  16. Rashmi; Kapoor, A. K.; Kumar, U.; Balakrishnan, V. R.; Basu, P. K. Pramana 2007, 68, 489 https://doi.org/10.1007/s12043-007-0052-2
  17. Yasuda, T.; Yamaguchi, Y.; Zou, D. C.; Tsutsui, T. Jpn. J. Appl. Phy. 2002, 41, 5626 https://doi.org/10.1143/JJAP.41.5626

Cited by

  1. Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution vol.29, pp.5, 2018, https://doi.org/10.1007/s13361-018-1916-z
  2. Biobased phenol and furan derivative coupling for the synthesis of functional monomers vol.21, pp.4, 2019, https://doi.org/10.1039/C8GC03541E
  3. Biaryl crosslinkers. I. Crosslinking of a bisazidobiaryl with poly(3-hexylthiophene) vol.89, pp.5, 2009, https://doi.org/10.1139/v11-008
  4. Divanillin-Based Polyazomethines: Toward Biobased and Metal-Free π-Conjugated Polymers vol.5, pp.10, 2009, https://doi.org/10.1021/acsomega.9b04181