DOI QR코드

DOI QR Code

Molecular Geometries and Electronic Structures of Methyl Pyropheophorbide-a and (Cationic) Tropolonyl Methyl Pyropheophorbides: DFT Calculation

  • Kim, Na-Ri (Department of Chemistry, Institute of Basic Science, Inje University) ;
  • Kim, Su-Jin (Department of Chemistry, Institute of Basic Science, Inje University) ;
  • Kim, Jin-Dong (Department of Chemistry, Institute of Basic Science, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry, Institute of Basic Science, Inje University) ;
  • Shim, Young-Key (School of Nano Engineering, Inje University) ;
  • Choe, Sang-Joon (Department of Chemistry, Institute of Basic Science, Inje University)
  • Published : 2009.01.20

Abstract

This study reports on the geometry optimizations and electronic structure calculations for methyl pyropheophorbide (MPPa), tropolonyl methyl pyropheophorbides (TMPPa, ITMPPa), and cationic tropolonyl methyl pyropheophorbides ($TMPPa^+{{\cdot}BF_4}^-,\;ITMPPa^+{{\cdot}BF_4}^-,\;TMPPa^+,\;and\;ITMPPa^+$) using Local Spin Density Approximation (LSDA/ 6-31G*) and the Restricted Hatree-Fock (RHF/6-31G*) level theory. From the calculated results, we found that substituted cationic tropolonyl groups have larger structural effects than those of substituted neutral tropolonyl groups. The order of structural change effects is $ITMPPa^+ > ITMPPa^+{{\cdot}BF_4}^-$ > ITMPPa, as a result of the isopropyl group. Because it is an electron-releasing group, the substituted isopropyl group electronic effect on a 3-position tropolone increases the Highest Occupied Molecular Orbital and Lowest Unoccupied Molecular Orbital (HOMO-LUMO) energy gap. It was constituted that the larger the cationic characters of these photosensitizers, the smaller the HOMOLUMO band gaps are. The orbital energies of the cationic systems and the ions are stronger than those of a neutral system because of a strong electrostatic interaction. However, this stabilization of orbital energies are counteracted by the distortion of chlorin macrocycle, which results in a large destabilization of chlorin-based compound HOMOs and smaller destabilization of LUMOs as shown in TMPPa (ITMPPa), $TMPPa^+{{\cdot}BF_4}^- (ITMPPa^+{{\cdot}BF_4}^-),\;and\;TMPPa^+\;(ITMPPa^+)$ of Figure 6 and Table 6-7. These results are in reasonable agreement with normal-coordinate structural decomposition (NSD) results. The HOMO-LUMO gap is an important factor to consider in the development of photodynamic therapy (PDT).

Keywords

References

  1. Webber, J.; Leeson, B.; Fromm, D.; Kessel, D. J. Photochem. Photobiol. 2005, 78, 135 https://doi.org/10.1016/j.jphotobiol.2004.11.001
  2. Caminos, D.; Spesia, B.; Durantini, E. Photochem. Photobiol. Sci. 2006, 5, 56 https://doi.org/10.1039/b513511g
  3. DeRosa, M. R.; Crutchley, R. J. Coord. Chem. Rev. 2002, 233 -234, 351
  4. Trust, T. J. Antimicrob. Agents Chemother. 1975, 7, 500 https://doi.org/10.1128/AAC.7.5.500
  5. Nitzan, Y.; Ashkenazi, H. Curr. Microbiol. 2001, 42, 408 https://doi.org/10.1007/s002840010238
  6. Villanueva, A. J. Phtochem. Phorobiol. 1993, 18, 295
  7. Ali, H.; van Lier, E. J. Chem. Rev. 1999, 99, 2379 https://doi.org/10.1021/cr980439y
  8. Jasat, A.; Dolphin, D. Chem. Rev. 1997, 97, 2267 https://doi.org/10.1021/cr950078b
  9. Garbo, G. M.; Fingar, V. H.; Wieman, T. J.; Noakes III, E. B.; Haydon, P. S.; Cerrito, P. B.; Kessel, D. H.; Morgan, A. R. Photochem. Photobiol. 1998, 68, 561 https://doi.org/10.1111/j.1751-1097.1998.tb02514.x
  10. Ravanat, J.; Cade, J.; Araki, K.; Toma, H. E.; Medeiros, M. H. G.; Mascio, P. D. Photochem. Photobiol. 1998, 68, 698
  11. Guiaev, A. B.; Leontis, N. B. Biochem. 1999, 38, 15425 https://doi.org/10.1021/bi9913808
  12. Bold, B.; Barkhuu, B.; Lee, W.; Shim, Y. K. Bull. Korean Chem. Soc. 2008, 29, 237 https://doi.org/10.5012/bkcs.2008.29.1.237
  13. Barkhuu, B. Develoment and Activity Tests of New Cationic Chlorins for Photodynamic Cancer Therapy, Thesis for Ph. D; Inje University, Korea, 2007
  14. Ghosh, A. In The Porphyrin Handbook; Kardish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 7, p 1.
  15. Shelnutt, J. A. In The Porphyrin Handbook; Kardish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 7, p 167.
  16. Pandey, R. K.; Zheng, G. In The Porphyrin Handbook; Kardish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 6, p 158.
  17. Takeuchi, T.; Gray, H. B.; Goddard III, W. A. J. Am. Chem. Soc. 1994, 116, 9730 https://doi.org/10.1021/ja00100a043
  18. Wang, Z.; Day, P. N.; Pachter, R. J. Chem. Phys. 1998, 108, 2504 https://doi.org/10.1063/1.475633
  19. Park, S. H.; Kim, S. J.; Kim, J. D.; Park, S.; Huh, D. S.; Shim, Y. K.; Choe, S. J. Bull. Korean Chem. Soc. 2008, 29, 1141 https://doi.org/10.5012/bkcs.2008.29.6.1141
  20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Peterson, G. A.; Montgometry, J. A.; Raghavacari, K.; Al- Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. J.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. L.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Wallingford, CT, 2005꣮⨀ࠋ
  21. Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138 https://doi.org/10.1016/0022-2852(61)90236-3
  22. Shelnutt, J. A.; Song, X. Z.; Ma, J. G.; Jia, S. L.; Jentzen, W.; Medforth, C. J. Chem. Soc. Rev. 1998, 27, 31 https://doi.org/10.1039/a827031z
  23. Jentzen, W.; Ma, J. G.; Shelnutt, J. A. Biophys. J. 1998, 74, 753 https://doi.org/10.1016/S0006-3495(98)74000-7
  24. Fischer, M.; Templeton, D.; Zalkin, A.; Calvin, M. J. Am. Chem. Soc. 1972, 94, 3613 https://doi.org/10.1021/ja00765a059
  25. Zhao, Y.; Truhlar, D. Acc. Chem. Res. 2008, 41, 157 https://doi.org/10.1021/ar700111a

Cited by

  1. Comparison of Different Theory Models and Basis Sets in Calculations of TPOP24N-Oxide Geometry and Geometries of meso-Tetraphenyl Chlorin N-Oxide Regioisomers vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2861
  2. Comparative DFT study for molecular geometries and spectra of methyl pheophorbides-a: test of M06-2X and two other functionals vol.14, pp.7, 2009, https://doi.org/10.1142/s1088424610002410
  3. Synthesis and Photodynamic Activities of Pyrazolyl and Cyclopropyl Derivatives of Purpurin-18 Methyl Ester and Purpurin-18-N-butylimide vol.32, pp.1, 2009, https://doi.org/10.5012/bkcs.2011.32.1.169
  4. Comparison of different theory models and basis sets for the calculation of FbC-M10Iso-Bn geometry and geometries of chlorin-imide and chlorin-isoimide isomeric pairs vol.17, pp.5, 2009, https://doi.org/10.1142/s1088424613500582