References
-
Williams, R. M. Synthesis of Optically Active
$\alpha$ -Amino Acids; Pergamon: Oxford, 1989. - Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789. https://doi.org/10.1016/S0040-4020(97)00476-6
- Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer: Berlin, 1999; Vols. 1-3.
- Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013. https://doi.org/10.1021/cr020020e
- Duthaler, R. O. Tetrahedron 1994, 50, 1539. https://doi.org/10.1016/S0040-4020(01)80840-1
- Arend, M. Angew. Chem. Int.Ed. 1999, 38, 2873. https://doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2873::AID-ANIE2873>3.0.CO;2-P
- Kotha, S. Acc. Chem. Res. 2003, 36, 342. https://doi.org/10.1021/ar020147q
- Najera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584. https://doi.org/10.1021/cr050580o
- Okuma, T.; Kitamura, M.; Noyori, R. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH: New York, 2000; pp 1-110.
- Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029. https://doi.org/10.1021/cr020049i
- Corey, E. J.; Now, M. C. J. Am. Chem. Soc. 1997, 119, 12414. https://doi.org/10.1021/ja973174y
- Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595. https://doi.org/10.1016/S0040-4039(97)10293-3
- Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39, 1279. https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1279::AID-ANIE1279>3.0.CO;2-U
- Takamura, M.; Hamashima, Y.; Usuda, H.; Kanai, M.; Shibassaki, M. Angew. Chem. Int. Ed. 2000, 39, 1650. https://doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1650::AID-ANIE1650>3.0.CO;2-P
- Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157. https://doi.org/10.1021/ol990623l
- Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 762. https://doi.org/10.1021/ja9935207
- Kobayashi, S.; Hamada, T.; Manabe, K. J. Am. Chem. Soc. 2002, 154, 5640.
- Ferassis, D.; Young, B.; Cox, C.; Dudding, T.; Drury, W. J.; Ryzhkov, L.; Taggi, A. E.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 67. https://doi.org/10.1021/ja016838j
- Cordova, A.; Watanabe, S. I.; Tanaka, F.; Notz, W.; Barbas, C. F. J. Am. Chem. Soc. 2002, 124, 1842. https://doi.org/10.1021/ja017270h
- Cordova, A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas, C. F. J. Am. Chem. Soc. 2002, 124, 1866. https://doi.org/10.1021/ja017833p
- List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827. https://doi.org/10.1021/ja0174231
- Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 112964.
- Juhl, K.; Gathergood, N.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2001, 40, 2995 https://doi.org/10.1002/1521-3773(20010817)40:16<2995::AID-ANIE2995>3.0.CO;2-M
- Genet, J.-P.; Creck, C.; Lavergne, D. Modern Amination Methods; Ricci, A., Ed.; Wiley-VCH: Weinheim, 2000; Ch. 3.
- Greck, C.; Drouillat, B.; Thomassigng, C. Eur. J. Org. Chem. 2004, 1377.
- Erdik, E. Tetrahedron 2004, 60, 8742. https://doi.org/10.1002/anie.200462314
- Janey, J. M. Angew. Chem. Int. Ed. 2005, 44, 4292. https://doi.org/10.1021/ja0175486
- Juhl, K.; Jorgensen, K. A. J. Am. Chem. Soc. 2002, 124, 2420. https://doi.org/10.1002/anie.200390350
- Marigo, M.; Juhl, K.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2003, 42, 1367. https://doi.org/10.1002/anie.200390350
- Ma, S.; Jiao, N.; Zheng, Z.; Ma, Z.; Lu, Z.; Ye, L.; Deng, Y.; Chen, G. Org. Lett. 2004, 6, 2193. https://doi.org/10.1016/j.tetlet.2006.05.003
- Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4565. https://doi.org/10.1021/jo0622678
- Comelles, J.; Pericas, A.; Moreno-Manas, M.; Vallribera, A.; Drudis-Sole, G.; Lledos, A.; Parella, T.; Roglans, A.; Garcia-Grands, S.; Roces-Fernandez, L. J. Org. Chem. 2007, 72, 2077. https://doi.org/10.1021/ja0752585
- Mashiko, T.; Hara, K.; Tanaka, D.; Fujiwara, Y.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 11342. https://doi.org/10.1021/ja710273s
- Hasegawa, Y.; Watanabe, M.; Gridnev, I. D.; Ikariya, T. J. Am. Chem. Soc. 2008, 130, 2158. https://doi.org/10.1021/ja710273s
- Pihko, P. M.; Pohjakallio, A. Synlett 2004, 2115.
- Xu, X.; Yabuta, T.; Yuan, P.; Takemoto, Y. Synlett 2006, 137. https://doi.org/10.1021/ja066808m
- Terada, M.; Nakano, M.; Ube, H. J. Am. Chem. Soc. 2006, 128, 16044. https://doi.org/10.1016/j.tetlet.2008.07.041
- Jung, S. H.; Kim, D. Y. Tetrahedron Lett. 2008, 49, 5527. https://doi.org/10.5012/bkcs.2008.29.11.2091
- Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2091. https://doi.org/10.1021/ol010281v
- Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545. https://doi.org/10.1081/SCC-120015774
- Kim, D. Y.; Choi, Y. J.; Park, H. Y.; Joung, C. U.; Koh, K. O.; Mang, J. Y.; Jung, K.-Y. Synth. Commun. 2003, 33, 435. https://doi.org/10.1021/jo0401772
- Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897. https://doi.org/10.1021/jo0401772
- Park, E. J.; Kim, H. R.; Joung, C. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2004, 25, 1451. https://doi.org/10.5012/bkcs.2004.25.10.1451
- Kim, D. Y.; Huh, S. C. Bull. Korean Chem. Soc. 2004, 25, 347. https://doi.org/10.1021/ol050413a
- Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett. 2005, 7, 2309. https://doi.org/10.1016/j.tetlet.2005.02.164
- Kim, H. R.; Kim, D. Y. Tetrahedron Lett. 2005, 46, 3115. https://doi.org/10.5012/bkcs.2006.27.3.423
- Kim, S. M.; Kang, Y. K.; Lee, K.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2006, 27, 423. https://doi.org/10.5012/bkcs.2006.27.3.423
- Kang, Y. K.; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135. https://doi.org/10.5012/bkcs.2007.28.12.2191
- Cho, M. J.; Kang, Y. K.; Lee, N. R.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2191. https://doi.org/10.5012/bkcs.2007.28.12.2435
- Kim, S. M.; Kang, Y. K.; Cho, M. J.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2435. https://doi.org/10.5012/bkcs.2007.28.12.2435
- Lee, J. H.; Bang, H. T.; Kim, D. Y. Synlett 2008, 1821.
- Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett 2008, 2659. https://doi.org/10.5012/bkcs.2008.29.11.2093
- Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2093. https://doi.org/10.1021/ja052935r
- Evans, D. A.; Seidel, D. J. Am. Chem. Soc. 2005, 127, 9958. https://doi.org/10.1021/ja0735913
- Evans, D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007, 129, 11583. https://doi.org/10.1021/ic7017727
- Fossy, J. S.; Matsubara, R.; Kiyohara, H.; Kobayashi, S. Inorg. Chem. 2008, 47, 781. https://doi.org/10.5012/bkcs.2008.29.10.2036
- Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2036. https://doi.org/10.5012/bkcs.2008.29.10.2036
피인용 문헌
- Catalytic Enantioselective Fluorination of α-Chloro-β-keto Esters in the Presence of Chiral Nickel Complexes vol.352, pp.16, 2010, https://doi.org/10.1002/adsc.201000515
- Thiourea-catalyzed Intramolecular Allylic Amination: Synthesis of Dihydroquinoline Derivatives vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10014
- Construction of Chiral α-Amino Quaternary Stereogenic Centers via Phase-Transfer Catalyzed Enantioselective α-Alkylation of α-Amidomalonates vol.80, pp.6, 2015, https://doi.org/10.1021/jo502791d
- ) complex vol.3, pp.7, 2016, https://doi.org/10.1039/C6QO00095A
- Enantioselective Michael Addition of 3-Aryl-Substituted Oxindoles to Methyl Vinyl Ketone Catalyzed by a Binaphthyl-Modified Bifunctional Organocatalyst vol.17, pp.6, 2012, https://doi.org/10.3390/molecules17067523
- Zinc-catalyzed Enantioselective Electrophilic Amination of β-Ketocarbonyl Compounds with Axially Chiral Phenanthroline Ligands vol.44, pp.12, 2015, https://doi.org/10.1246/cl.150802
- ChemInform Abstract: Catalytic Asymmetric Electrophilic α-Amination of β-Ketoesters in the Presence of Chiral Nickel Complexes. vol.40, pp.28, 2009, https://doi.org/10.1002/chin.200928026
- Enantioselective Fluorination of β-Keto Phosphonates and β-Ketoesters Catalyzed by Chiral Palladium Complexes vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.829
- Palladium-catalyzed Asymmetric Mannich-type Reactions of α-Cyanoketones with N-Boc Aldimines vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1437
- Enantioselective Conjugate Addition of Fluoromalonate to Nitroalkenes Catalyzed by Chiral Nickel Complexes vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1439
- Organocatalytic Asymmetric Michael Addition of β-Ketoesters to Nitroalkenes vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1441
- Catalytic enantioselective conjugate addition of aromatic amines to fumarate derivatives: asymmetric synthesis of aspartic acid derivatives vol.65, pp.29, 2009, https://doi.org/10.1016/j.tet.2009.05.037
- Organocatalytic Enantioselective Synthesis of Tertiary α-Hydroxy Phosphonates vol.32, pp.3, 2009, https://doi.org/10.5012/bkcs.2011.32.3.785
- Microwave-Assisted Organocatalytic Synthesis of Tetrahydroquinolines via Hydride Transfer and Cyclization vol.32, pp.5, 2009, https://doi.org/10.5012/bkcs.2011.32.5.1773
- Organocatalytic Enantioselective Michael Addition of α-Nitroacetate to α,β-Unsaturated Enones: A Route to Chiral γ-Nitro Ketones and δ-Keto Esters vol.32, pp.1, 2011, https://doi.org/10.5012/bkcs.2011.32.1.291
- Asymmetric Mannich-type Reactions of Fluorinated Ketoesters with Binaphthyl-Modified Thiourea Catalysts vol.32, pp.4, 2009, https://doi.org/10.5012/bkcs.2011.32.4.1195
- Enantioselective Conjugate Addition of Anthrone to Nitroalkenes Catalyzed by Binaphthyl-Modified Organocatalyst vol.32, pp.8, 2009, https://doi.org/10.5012/bkcs.2011.32.8.2875
- Organocatalytic Asymmetric Conjugate Addition of 3-Alkyl-Substituted Oxindoles to Vinyl Ketones vol.33, pp.10, 2009, https://doi.org/10.5012/bkcs.2012.33.10.3171
- Organocatalytic Asymmetric Michael Addition of 1,3-Cyclohexanedione to Benzylidenemalonitriles vol.35, pp.1, 2009, https://doi.org/10.5012/bkcs.2014.35.1.98