DOI QR코드

DOI QR Code

Synthesis of a Novel Series of Imidazo[1,2-α]pyridines as Acyl-CoA: Cholesterol Acyltransferase (ACAT) Inhibitors

  • Jin, Ying-Lan (Korea Research Institute of Biosciences and Biotechnology (KRIBB)) ;
  • Rho, Mun-Chual (Korea Research Institute of Biosciences and Biotechnology (KRIBB)) ;
  • Gajulapati, Kondaji (School of Life Sciences and Biotechnology, Korea University) ;
  • Jung, Hwa-Young (School of Life Sciences and Biotechnology, Korea University) ;
  • Boovanahalli, Shanthaveerappa K. (Korea Research Institute of Biosciences and Biotechnology (KRIBB)) ;
  • Lee, Jee-Hyun (College of Pharmacy, Chungnam National University) ;
  • Song, Gyu-Yong (College of Pharmacy, Chungnam National University) ;
  • Choi, Jung-Ho (Korea Research Institute of Biosciences and Biotechnology (KRIBB)) ;
  • Kim, Young-Kook (Korea Research Institute of Biosciences and Biotechnology (KRIBB)) ;
  • Lee, Kyeong (Korea Research Institute of Biosciences and Biotechnology (KRIBB)) ;
  • Choi, Yong-Seok (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2009.06.20

Abstract

A novel series of imidazo[1,2-$\alpha$]pyridines was designed, synthesized, and tested for their ability to inhibit acyl- CoA:cholesterol acyltransferase. Preliminary lead optimization efforts resulted in the identification of ACAT inhibitors represented by analogues 5b, 5c, 6a, 6c, 7b, and 7c. The ACAT inhibitory activity of these compounds was further established by potent inhibition of cholesteryl ester formation in HepG2 cells by a representative analogue 7b.

Keywords

References

  1. Goodman, D. S. Physiol. Rev. 1965, 45, 747.
  2. Chang, T.;Doolittle, G. M. In The Enzymes, 3rd ed.; Boyer, P. D., Ed.; Academic Press: New York, 1985; Vol. 16, p 523.
  3. Largis, E. E.; Wang, C. H.; DeVries, V. G.; Schaffer, S. A. J. Lipid Res. 1989, 30, 681.
  4. Suckling, K. E.; Stange, E. F. J. Lipid Res. 1985, 26, 647.
  5. Heider, J. G.; Pickens, C. E.; Kelly, L. A. J. Lipid Res. 1983, 24, 1127.
  6. Giovannoni, M. P.; Dal Piaz, V.; Vergelli, C.; Barlocco, D. Mini-Rev. Med. Chem. 2003, 3, 576. https://doi.org/10.2174/1389557033487890
  7. Matsuda, K. Med. Res. Rev. 1994, 14, 271. https://doi.org/10.1002/med.2610140302
  8. McCarthy, P. A. Med. Res. Rev. 1993, 13,139. https://doi.org/10.1002/med.2610130203
  9. Ken-Ichiro, K.; Tatsuki, S.; Takumi, T.; Tsutomu, M.; Keiko, T.; Mikio, O.; Hirofumi, T.; Hisao, Y. J. Med. Chem. 1995, 38, 3174. https://doi.org/10.1021/jm00016a021
  10. Ken-Ichiro, K.; Tatsuki, S.; Takumi, T.; Toru, M.;Kenzo, W.; Hiroko, T.;Tsutomu, M.; Keiko, T.; Mikio, O.;Hirofumi, T.; Hisao, Y. J. Med. Chem. 1996, 39, 1262. https://doi.org/10.1021/jm950828+
  11. Akira, T.; Takeshi, T.; Hiroyuki, H.; Yuri, S.; Noriko, I.; Masae, S.;Hisashi, T.; Hirokazu, T. Bioorg. Med. Chem. 1998, 6, 15. https://doi.org/10.1016/S0968-0896(97)10009-8
  12. Jeong, T. S.; Kim, K. S.; Yu, H.; Kim, M. J.; Cho, K. H.; Choi, Y.K.; Kim, H. C.; Park, H. Y.; Lee, W. S. Bioorg. Med. Chem. 2005, 15, 385. https://doi.org/10.1016/j.bmcl.2004.10.066
  13. Naoto, M.; Tetsuya, K.; Mina, F.; Yasuji, S.; Koji, M. Bioorg. Med. Chem. Lett. 1999, 9, 2039. https://doi.org/10.1016/S0960-894X(99)00330-3
  14. Lee, S.; Han, J. M.;Kim, H.; Kim, E.; Jeong, T. S.; Lee, W. S.; Cho, K. H. Bioorg. Med. Chem. Lett. 2004, 18, 4677.
  15. Xu, M. Z.; Lee, W. S.; Kim, M. J.; Park, D.-S.; Yu, H.; Tian, G.-R.; Jeong, T. S.; Park, H. Y. Bioorg. Med. Chem. Lett. 2004, 14, 4277. https://doi.org/10.1016/j.bmcl.2004.05.086
  16. Lee, W. S.; Lee, D.W.; Baek, Y. I.; An, S. J.; Cho, K. H.; Choi, Y. K.; Kim, H. C.; Park, H. Y.; Bae, K. H.; Jeong, T. S. Bioorg. Med. Chem. Lett. 2004, 14, 3109. https://doi.org/10.1016/j.bmcl.2004.04.023
  17. Jeong, T. S.; Kim, K. S.; An, S. J.; Cho, K. H.;Lee, S.; Lee, W. S. Bioorg. Med. Chem. Lett. 2004, 14, 2715. https://doi.org/10.1016/j.bmcl.2004.03.079
  18. Kwon, B. M.; Kim, M. K.; Baek, N. I.; Kim, D. S.; Park, J. D.;Kim, Y. K.; Lee, H.; Kim, S. I. Bioorg. Med. Chem. Lett. 1999, 9, 1375. https://doi.org/10.1016/S0960-894X(99)00208-5
  19. Gueiffier, A.; Lhassani, M.; Elhakmaoui, A.; Snoeck, R.;Andrei, G.; Chavignon, O.; Teulade, J.-C.; Kerbal, A.; Essassi, E. M.; Debouzy, J.-C.; Witvrouw, M.; Blache, Y.; Balzarini, J.;De Clercq, E.; Chapat, J.-P. J. Med. Chem. 1996, 39, 2856. https://doi.org/10.1021/jm9507901
  20. Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli, P.; Biancotti, A.; Gamba, A.; Murmann, W. J. Med. Chem. 1965, 8, 305. https://doi.org/10.1021/jm00327a007
  21. Abe, Y.; Kayakiri, H.; Satoh, S.; Inoue, T.; Sawada, Y.;Imai, K.; Inamura, N.; Asano, M.; Hatori, C.; Katayama, A.;Oku, T.; Tanaka, T. J. Med. Chem. 1998, 41, 564. https://doi.org/10.1021/jm970591c
  22. Trapani, G.;Franco, M.; Latrofa, A.; Ricciardi, L.; Carotti, A.; Serra, M.;Sanna, E.; Biggio, G.; Liso, G. J. Med. Chem. 1999, 42, 3934. https://doi.org/10.1021/jm991035g
  23. Katritzky, A. R.; Xu, Y.-J.; Tu, H. J. Org. Chem. 2003, 68, 4935 https://doi.org/10.1021/jo026797p
  24. Mosby, W. L. In Heterocyclic Systems with Bridgehead Nitrogen Atoms; Mosby, W. L., Ed.; Wiley: New York, 1961; Part I, p 460 and Part II, p 802.
  25. Blewitt, W. L. In Special Topics in Heterocyclic Chemistry; Weissberger, A.; Taylor, E. C., Eds.; Wiley: New York, 1977; p 117.
  26. Sablayrolles, C.; Cros, G. H.;Milhavet, J. C.; Rechenq, E.; Chapat, J.-P.; Boucard, M.;Serrano, J. J.; McNeill, J. H. J. Med. Chem. 1984, 27, 206. https://doi.org/10.1021/jm00368a018
  27. Spitzer, W. A.; Victor, F.; Pollock, D. G.; Hayers, J. S. J. Med. Chem. 1988, 31, 1590. https://doi.org/10.1021/jm00403a018
  28. Rho, M.-C.; Lee, S. W.; Park, H. R.; Choi, J. H.; Kang, J. Y.;Kim, K.; Lee, H. S.; Kim, Y. K. Phytochemistry 2007, 68, 899. https://doi.org/10.1016/j.phytochem.2006.11.025

Cited by

  1. N-Fused Imidazoles As Novel Anticancer Agents That Inhibit Catalytic Activity of Topoisomerase IIα and Induce Apoptosis in G1/S Phase vol.54, pp.14, 2011, https://doi.org/10.1021/jm200235u
  2. A facile protocol for the synthesis of 3-aminoimidazo-fused heterocycles via the Groebke–Blackburn–Bienayme reaction under catalyst-free and solvent-free conditions vol.16, pp.3, 2014, https://doi.org/10.1039/c3gc42130a
  3. ]pyridine vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11228
  4. Syntheses of biodynamic heterocycles: baker’s yeast-assisted cyclocondensations of organic nucleophiles and phenacyl chlorides vol.43, pp.8, 2017, https://doi.org/10.1007/s11164-017-2880-0
  5. ChemInform Abstract: Synthesis of a Novel Series of Imidazo[1,2-α]pyridines as Acyl-CoA: Cholesterol Acyltransferase (ACAT) Inhibitors. vol.40, pp.45, 2009, https://doi.org/10.1002/chin.200945149
  6. Functionalization of Imidazo[1,2‐a]pyridines by Means of Metal‐Catalyzed Cross‐Coupling Reactions vol.2014, pp.24, 2009, https://doi.org/10.1002/ejoc.201400065
  7. Solvent–free Multicomponent Synthesis of Biologically–active Fused–imidazo Heterocycles Catalyzed by Reusable Yb(OTf)3 Under Microwave Irradiation vol.1, pp.5, 2016, https://doi.org/10.1002/slct.201600241
  8. Triarylimidazo[1,2-a]pyridine-8-carbonitriles: solvent-free synthesis and their anti-cancer evaluation vol.49, pp.14, 2009, https://doi.org/10.1080/00397911.2019.1605445
  9. Chan-Lam N-arylation and C-H amination with heteroaromatic ring-NH: an approach to access extended-fused imidazo[1,2-a]-pyridines/pyrazines vol.44, pp.2, 2020, https://doi.org/10.1039/c9nj04966e
  10. Calculations of pKa Values of Selected Pyridinium and Its N-Oxide Ions in Water and Acetonitrile vol.124, pp.3, 2009, https://doi.org/10.1021/acs.jpca.9b10319
  11. Quantitative modeling for prediction of thermodynamic properties of some pyridine derivatives using molecular descriptors and genetic algorithm‐multiple linear regressions vol.67, pp.4, 2009, https://doi.org/10.1002/jccs.201900283
  12. Sustainable Synthetic Approaches for 3‐Aminoimidazo‐fused HeterocyclesviaGroebke‐Blackburn‐Bienaymé Process vol.5, pp.34, 2009, https://doi.org/10.1002/slct.202002894
  13. Role of intermolecular interactions in formation of mono- and diaminopyridine crystals: study from the energetic viewpoint vol.32, pp.1, 2009, https://doi.org/10.1007/s11224-020-01625-6
  14. Visible‐Light‐Promoted Synthesis of Fusesd Imidazoheterocycle by Eosin Y under Metal‐Free and Solvent‐Free Conditions vol.6, pp.48, 2021, https://doi.org/10.1002/slct.202103548