References
- Needleman, H. Annu. Rev. Med. 2004, 55, 1318
- Friberg, L. Annu. Rev. Pub. Health 1983, 4, 367 https://doi.org/10.1146/annurev.pu.04.050183.002055
- Clarkson, T. W.; Magos, L. Crit. Rev. Toxicol. 2006, 36, 609 https://doi.org/10.1080/10408440600845619
- Hanrahan, G.; Patila, D. G. Wang, J. J. Environ. Monitor. 2004, 6, 657 https://doi.org/10.1039/b403975k
- Yantasee, W.; Lin, Y.; Hongsirikarn, K.; Fryxell, G. E.; Addleman, R.; Timchalk, C. Environ. Health. Persp. 2007, 115, 1683 https://doi.org/10.1289/ehp.10190
- Brett, C. M. A. Pure. Appl. Chem. 2001, 73, 1969 https://doi.org/10.1351/pac200173121969
- Oehme, I.; Wolfbeis, O. S. Mikrochim. Acta 1997, 126, 177 https://doi.org/10.1007/BF01242319
- Kuswandi, B. Jurnal Ilmu Dasar 2000, 1, 18
- Verma, N.; Singh, M. BioMetals 2005, 18, 121 https://doi.org/10.1007/s10534-004-5787-3
- Valeur, B.; Leray, I.; Coordin. Chem. Rev. 2000, 205, 3 https://doi.org/10.1016/S0010-8545(00)00246-0
- Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465 https://doi.org/10.1039/b802497a
- Yu, Y.; Lin, L. R.; Yang, K. B.; Zhong, X.; Huang, R. B.; Zheng, L. S. Talanta 2006, 69, 103 https://doi.org/10.1016/j.talanta.2005.09.015
- Lee, H. N.; Kim, H. N.; Swamy, K. M. K.; Park, M. S.; Kim, J.; Lee, H.; Lee, K. H.; Park, S.; Yoon, J. Tetrahedron Lett. 2008, 48, 1261
- Kwon, S. K.; Kou, S.; Kim, H. N.; Chen, X.; Hwang, H.; Nam, S. W.; Kim, S. H.; Swamy, K. M. K.; Park, S.; Yoon, J. Tetrahedron Lett. 2008, 49, 4102 https://doi.org/10.1016/j.tetlet.2008.04.139
- Kim, J.; Hwang, H.; Jun, E. J.; Nam, S.; Lee, K.; Kim, S. H.; Yoon, J.; Kang, S.; Park, S. Bull. Korean Chem. Soc. 2008, 29, 225 https://doi.org/10.5012/bkcs.2008.29.1.225
- Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. J. Am. Chem. Soc. 2007, 129, 1500 https://doi.org/10.1021/ja0643319
- Wu, F.; Bae, S. W.; Hong, J. Tetrahedron Lett. 2006, 47, 8851 https://doi.org/10.1016/j.tetlet.2006.10.060
- Lee, M. H.; Wu, J.; Lee, J. W.; Jung, J. H.; Kim, J. S. Org. Lett. 2007, 9, 2501 https://doi.org/10.1021/ol0708931
- Park, S.; Wolanin, P. M.; Yuzbashyan, A. E.; Lin, H.; Darnton, N. C.; Stock, J. B.; Silberzan, P.; Austin, R. Proc. Natl. Acad. Sci. USA 2003, 100, 13910 https://doi.org/10.1073/pnas.1935975100
- Erten-Unal, M.; Wixson, B. G. Water Air Soil Pollut. 1999, 116, 501 https://doi.org/10.1023/A:1005176322247
Cited by
- Nanostructured Sensors for Detection of Heavy Metals: A Review vol.1, pp.7, 2013, https://doi.org/10.1021/sc400019a
- Microfluidic Paper-Based Analytical Devices (μPADs) and Micro Total Analysis Systems (μTAS): Development, Applications and Future Trends vol.76, pp.19-20, 2013, https://doi.org/10.1007/s10337-013-2413-y
- A New Benzylidene-based Fluorophore Polymer as “Turn on” Fluorescent Chemosensor Selectively for Heavy Metal Ions vol.43, pp.7, 2014, https://doi.org/10.1246/cl.140239
- A Biphasic Mercury‐Ion Sensor: Exploiting Microfluidics to Make Simple Anilines Competitive Ligands vol.21, pp.41, 2009, https://doi.org/10.1002/chem.201502736
- Nitrogen-doped carbon dots as fluorescence ON-OFF-ON sensor for parallel detection of copper(ii) and mercury(ii) ions in solutions as well as in filter paper-based microfluidic device vol.1, pp.2, 2009, https://doi.org/10.1039/c8na00080h
- N-Doped carbon dots with pH-sensitive emission, and their application to simultaneous fluorometric determination of iron(III) and copper(II) vol.187, pp.1, 2009, https://doi.org/10.1007/s00604-019-4017-1
- A Review of Microfluidic Detection Strategies for Heavy Metals in Water vol.9, pp.4, 2021, https://doi.org/10.3390/chemosensors9040060