DOI QR코드

DOI QR Code

Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids

  • Chae, Weon-Sik (Korea Basic Science Institute, Gangneung Center,Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign) ;
  • Kershner, Ryan J. (Department of Materials Science and Engineering, Frederick Seitz aterials Research Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign,Department of Mechanical Engineering, University of Wisconsin-Madison) ;
  • Braun, Paul V. (Department of Materials Science and Engineering, Frederick Seitz aterials Research Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign)
  • Published : 2009.01.20

Abstract

Monodisperse ZnS colloidal particles with precisely specified diameters over a broad size range were synthesized by controlled aggregation. Sub-10nm ZnS seed crystals were first nucleated at ambient temperature and then grown at an elevated temperature, which produced large polydisperse colloidal particles. Subsequent rapid thermal quenching and heating processes induced a number of secondary nucleations in addition to growing the large polydisperse microparticles which were finally removed by centrifugation and discarded at the completion of the reaction. The secondary nuclei were then aggregated further at elevated temperatures, resulting in colloidal particles which exhibited a nearly monodisperse size distribution. Particle diameters were controlled over a wide size range from 50 nm to 1 μm. Mie simulations of the experiment extinction spectra determined that the volume fraction of the ZnS is 0.66 in an aggregated colloidal particle and the colloidal particle effective refractive index is approximately 2.0 at 590 nm in water. The surface of the colloidal particles was subsequently coated with silica to produce ZnS@silica core-shell particles.

Keywords

References

  1. Pauzauskie, P. J.; Yang, P. Mater. Today 2006, 9, 36
  2. Johnson, J. C.; Choi, H.-J.; Knutsen, K. P.; Schaller, R. D.; Yang, P.; Saykally, R. J. Nature Mater. 2002, 1, 106 https://doi.org/10.1038/nmat728
  3. Choi, H.-J.; Johnson, J. C.; He, R.; Lee, S.-K.; Kim, F.; Pauzauskie, P.; Goldberger, J.; Saykally, R. J.; Yang, P. J. Phys. Chem. B 2003, 107, 8721 https://doi.org/10.1021/jp034734k
  4. Gradecak, S.; Qian, F.; Li, Y.; Park, H.-G.; Lieber, C. M. Appl. Phys. Lett. 2005, 87, 173111. https://doi.org/10.5012/bkcs.2007.28.6.953
  5. Lee, H. J.; Kim, D.-Y.; Yoo, J.-S.; Bang, J.; Kim, S.; Park, S.-M. Bull. Korean Chem. Soc. 2007, 28, 953 https://doi.org/10.1063/1.1431698
  6. Velikov, K. P.; Moroz, A.; van Blaaderen, A. Appl. Phys. Lett. 2002, 80, 49 https://doi.org/10.1063/1.1497197
  7. Velikov, K. P.; van Dillen, T.; Polman, A.; van Blaaderen, A. Appl. Phys. Lett. 2002, 81, 838 https://doi.org/10.1063/1.1784559
  8. Vossen, D. L.; van der Horst, A.; Dogterom, M.; van Blaaderen, A. Rev. Sci. Instrum. 2004, 75, 2960 https://doi.org/10.1021/nl071651x
  9. Ding, Y.; Motohisa, J.; Hua, B.; Hara, S.; Fukui, T. Nano Lett. 2007, 7, 3598 https://doi.org/10.1002/1521-4095(200103)13:6<377::AID-ADMA377>3.0.CO;2-X
  10. Birner, A.; Wehrspohn, R. B.; Gosele, U. M.; Busch, K. Adv. Mater. 2001, 13, 377 https://doi.org/10.1038/45140
  11. Braun, P. V.; Wiltzius, P. Nature 1999, 402, 604 https://doi.org/10.1038/nphoton.2007.252
  12. Rinne, S. A.; Garcia-Santamaria, F.; Braun, P. V. Nature Photon. 2008, 2, 52 https://doi.org/10.1126/science.1100999
  13. Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. Science 2004, 305, 1269 https://doi.org/10.1126/science.1060367
  14. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897 https://doi.org/10.1021/ja0480771
  15. Bartl, M. H.; Boettcher, S. W.; Hu, E. L.; Stucky, G. D. J. Am. Chem. Soc. 2004, 126, 10826 https://doi.org/10.1021/cm000843p
  16. Trindade, T.; O'Brien, P.; Pickett, N. L. Chem. Mater. 2001, 13, 3843 https://doi.org/10.5012/bkcs.2005.26.11.1776
  17. Hwang, C.-S.; Cho, I.-H. Bull. Korean Chem. Soc. 2005, 26, 1776 https://doi.org/10.5012/bkcs.2007.28.7.1091
  18. Lee, J. H.; Kim, Y. A.; Kim, K.; Huh, Y. D.; Hyun, J. W.; Kim, H. S.; Noh, S. J.; Hwang, C.-S. Bull. Korean Chem. Soc. 2007, 28, 1091 https://doi.org/10.1021/cm020409i
  19. Xia, B.; Lenggoro, I. W.; Okuyama, K. Chem. Mater. 2002, 14, 4969 https://doi.org/10.1021/ic060936u
  20. Wu, Q.; Cao, H.; Zhang, S.; Zhang, X.; Rabinovich, D. Inorg. Chem. 2006, 45, 7316 https://doi.org/10.1016/j.cplett.2007.03.063
  21. Panda, S. K.; Datta, A.; Chaudhuri, S. Chem. Phys. Lett. 2007, 440, 235 https://doi.org/10.1246/cl.2004.1320
  22. Zhang, Y.; Peng, Q.; Wang, X.; Li, Y. Chem. Lett. 2004, 33, 1320 https://doi.org/10.1021/la0101548
  23. Velikov, K. P.; van Blaaderen, A. Langmiur 2001, 17, 4779 https://doi.org/10.1039/f19848000563
  24. Wilhelmy, D. M.; Matijevic, E. J. Chem. Soc., Faraday Trans.1 1984, 80, 563 https://doi.org/10.1063/1.367961
  25. Scholz, S. M.; Vacassy, R.; Dutta, J.; Hofmann, H.; Akinc, M. J. Appl. Phys. 1998, 83, 7860 https://doi.org/10.1016/0021-9797(68)90272-5
  26. Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62 https://doi.org/10.1016/0021-9797(68)90272-5
  27. M. Bernhard, MieCalc (2002)
  28. van de Hulst, H. C. Light Scattering by Small Particles; Wiley: New York, 1957 https://doi.org/10.1119/1.14011
  29. Drake, R. M.; Gordon, J. E. Am. J. Phys. 1985, 53, 955 https://doi.org/10.1119/1.1466815
  30. Cox, A. J.; DeWeerd, A. J.; Linden, J. Am. J. Phys. 2002, 70, 620 https://doi.org/10.1021/la951534u
  31. Toikka, G.; Hayes, R. A.; Ralston, J. Langmuir 1996, 12, 3783 https://doi.org/10.1021/la062592q
  32. Hosein, I. D.; Liddell, C. M. Langmuir 2007, 23, 2892 https://doi.org/10.1021/la062592q

Cited by

  1. Transparent and Luminescent ZnS Ceramics Consolidated by Vacuum Hot Pressing Method vol.98, pp.10, 2015, https://doi.org/10.1111/jace.13781
  2. Spectroscopic determination of alkyl resorcinol concentration in hydroxyapatite composite vol.7, pp.1, 2016, https://doi.org/10.1186/s40543-016-0089-2
  3. Extrinsic size dependent plastic deformability of ZnS micropillars vol.792, pp.None, 2009, https://doi.org/10.1016/j.msea.2020.139706