DOI QR코드

DOI QR Code

A Kinetic Study on Aminolysis of S-4-Nitrophenyl Thiobenzoate in H2O Containing 20 mol % DMSO and 44 wt % EtOH: Effect of Medium on Reactivity and Mechanism

  • Ahn, Jung-Ae (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Park, Youn-Min (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Published : 2009.01.20

Abstract

Second-order rate constants ($k_N$) have been measured for nucleophilic substitution reactions of S-4-nitrophenyl thiobenzoate with a series of alicyclic secondary amines in $H_2O$ containing 20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Br$\phi$nsted-type plot exhibits a downward curvature, i.e., $\beta_{nuc}$ decreases from 0.94 to 0.34 as the amine basicity increases. The reactions in the aqueous DMSO have also been suggested to proceed through a zwitterionic tetrahedral intermediate (T${\pm}$) with change in the RDS on the basis of the curved Br$\phi$nsted-type plot. The reactions in the aqueous DMSO exhibit larger $k_N$ values than those in the aqueous EtOH. The macroscopic rate constants ($k_N$) for the reactions in the two solvent systems have been dissected into the microscopic rate constants ($k_1\;and\;k_2/k_{-1}$ ratio) to investigate effect of medium on reactivity in the microscopic level. It has been found that the $k_2/k_{-1}$ ratios are similar for the reactions in the two solvent systems, while $k_1$ values are larger for the reactions in 20 mol % DMSO than for those in 44 wt % EtOH, indicating that the larger $k_1$ is mainly responsible for the larger $k_N$. It has been suggested that the transition state is more stabilized in 20 mol % DMSO through mutual polarizability interaction than in 44 wt % EtOH through H-bonding interaction.

Keywords

References

  1. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, 1969; pp 480-483
  2. Jencks, W. P. J. Chem. Soc. Rev. 1981, 10, 345-375 https://doi.org/10.1039/cs9811000345
  3. Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637 https://doi.org/10.1021/ja01012a030
  4. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970 https://doi.org/10.1021/ja00463a032
  5. Castro, E. A.; Acuna, M.; Soto, C.; Trujillo, C.; Vasquez, B.; Santos, J. G. J. Phys. Org. Chem. 2008, 21, 816-822 https://doi.org/10.1002/poc.1399
  6. Castro, E. A.; Soto, C.; Vasquez, B.; Santos, J. G. ARKIVOC 2008, 151-160
  7. Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 129-135 https://doi.org/10.1002/poc.1007
  8. Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.;Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562 https://doi.org/10.1016/j.tet.2005.12.044
  9. Castro, E. A.; Aliaga, M.; Gazitua, M.; Santos, J. G. Tetrahedron 2006, 62, 4863-4869 https://doi.org/10.1016/j.tet.2006.03.013
  10. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685 https://doi.org/10.1021/jo047742l
  11. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092 https://doi.org/10.1021/jo051168b
  12. Lee, I.; Lee, H. W.; Yu, Y. K. Bull. Korean Chem. Soc. 2003, 24, 993-998 https://doi.org/10.5012/bkcs.2003.24.7.993
  13. Oh, H. K.; Park, C. Y.; Lee, J. M.; Lee, I. Bull. Korean Chem. Soc. 2001, 22, 383-387
  14. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 4706-4711 https://doi.org/10.1021/jo000411y
  15. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821 https://doi.org/10.1021/jo0705061
  16. Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985 https://doi.org/10.1039/b607194e
  17. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243 https://doi.org/10.1002/chem.200500647
  18. Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987 https://doi.org/10.1021/jo050172k
  19. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942 https://doi.org/10.1021/jo049694a
  20. Um, I. H.; Park, Y. M. Bull. Korean Chem. Soc. 2008, 29, 575-579 https://doi.org/10.5012/bkcs.2008.29.3.575
  21. Um, I. H.; Seo, J. A.; Lee, H. M. Bull. Korean Chem. Soc. 2008, 29, 1915-1919 https://doi.org/10.5012/bkcs.2008.29.10.1915
  22. Um, I. H.; Yeom, E. S.; Kwon, H. J.; Kwon, D. S. Bull. Korean Chem. Soc. 1997, 18, 865-868
  23. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677 https://doi.org/10.1021/jo801539w
  24. Um, I. H.; Han, H. J.; Baek, M. H.; Bae, S. Y. J. Org. Chem. 2004, 69, 6365-6370 https://doi.org/10.1021/jo0492160
  25. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746 https://doi.org/10.1021/jo034637n
  26. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005 https://doi.org/10.1021/jo0259360
  27. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 555-561 https://doi.org/10.1002/poc.1055
  28. Campodonico, P. R.; Fuentealba, P.; Castro, E. A.; Santos, J. G.; Contreras, R. J. Org.Chem. 2005, 70, 1754-1760 https://doi.org/10.1021/jo048127k
  29. Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404 https://doi.org/10.1021/jo049260f
  30. Castro, E. A.; Cubillos, M.; Aliaga, M.; Evangelisti, S.; Santos, J. G. J. Org. Chem. 2004, 69, 2411-2416 https://doi.org/10.1021/jo035451r
  31. Castro, E. A.; Galvez, A.; Leandro, L.; Santos, J. G. J. Org. Chem. 2002, 67, 4309-4315 https://doi.org/10.1021/jo025562a
  32. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524 https://doi.org/10.1021/cr990001d
  33. Oh, H. K.; Lee, J. M.; Lee, H. W.; Lee, I. Int. J. Chem. 2004, 36, 434-440
  34. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998 https://doi.org/10.1021/jo0264269
  35. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877 https://doi.org/10.1021/jo025637a
  36. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780-5784 https://doi.org/10.1021/jo970413r
  37. Um, I. H.; Yoon, S. R.; Park, H. R.; Han, H. J. Org. Biomol. Chem. 2008, 6, 1618-1624 https://doi.org/10.1039/b801422a
  38. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306 https://doi.org/10.1021/jo052417z
  39. Lee, I.; Shim, C. S.; Lee, H. W. J. Chem. Res., Synop. 1992, 90-91
  40. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 657-661
  41. Lee, I.; Koh, H. J. New J. Chem. 1996, 20, 131-136
  42. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791 https://doi.org/10.1021/jo051052f
  43. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536 https://doi.org/10.1021/jo050119w
  44. Castro, E. A.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2003, 68, 8157-8161 https://doi.org/10.1021/jo0348120
  45. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444 https://doi.org/10.1021/jo048227q
  46. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172 https://doi.org/10.1021/jo049812u
  47. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159
  48. Castro, E. A.; Ureta, C. J. Org. Chem. 1989, 54, 2153-2159 https://doi.org/10.1021/jo00270a026
  49. Parker, A. J. Chem. Rev. 1969, 69, 1-32 https://doi.org/10.1021/cr60257a001
  50. Buncel, E.; Wilson, H. Adv. Phys. Org. Chem. 1977, 14, 133-202 https://doi.org/10.1016/S0065-3160(08)60109-4

Cited by

  1. Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2955
  2. -Methoxy Group on Reactivity and Reaction Mechanism vol.76, pp.18, 2011, https://doi.org/10.1021/jo201387h
  3. Nonlinear Hammett plots in pyridinolysis of 2,4-dinitrophenyl X-substituted benzoates: change in RDS versus resonance contribution vol.8, pp.16, 2009, https://doi.org/10.1039/c0ob00031k
  4. Kinetic Study on Aminolysis of 4-Pyridyl X-Substituted Benzoates: Effect of Substituent X on Reactivity and Reaction Mechanism vol.32, pp.6, 2009, https://doi.org/10.5012/bkcs.2011.32.6.1907
  5. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Diphenylphosphinothioates: Steric Hindrance versus Nucleofugality in Nucleophilic Substitution Reactions vol.32, pp.6, 2009, https://doi.org/10.5012/bkcs.2011.32.6.2117
  6. Aminolysis of S-4-Nitrophenyl X-Substituted Thiobenzoates: Effect of Nonleaving-Group Substituents on Reactivity and Mechanism vol.32, pp.4, 2009, https://doi.org/10.5012/bkcs.2011.32.4.1153