DOI QR코드

DOI QR Code

N-Oxidation of Pyrazines by Bromamine-B in Perchloric Acid Medium: Kinetic and Mechanistic Approach

  • Puttaswamy (Department of Chemistry, Central College Campus, Bangalore University) ;
  • Shubha, J.P. (Department of Chemistry, Central College Campus, Bangalore University)
  • Published : 2009.09.20

Abstract

Kinetic investigations on the oxidation of pyrazine and four 2-substituted pyrazines viz., 2-methylpyrazine, 2-ethylpyrazine, 2-methoxypyrazine and 2-aminopyrazine by bromamine-B (BAB) to the respective N-oxides have been studied in HCl$O_4$ medium at 303 K. The reactions show identical kinetics being first-order each in $[BAB]_o\;and\;[pyrazine]_o$, and a fractional- order dependence on $[H^+]$. Effect of ionic strength of the medium and addition of benzenesulfonamide or halide ions showed no significant effect on the reaction rate. The dielectric effect is positive. The solvent isotope effect was studied using $D_2$O. The reaction has been studied at different temperatures and activation parameters for the composite reaction have been evaluated from the Arrhenius plots. The reaction showed 1:1 stoichiometry and the oxidation products of pyrazines were characterized as their respective N-oxides. Under comparable experimental conditions, the oxidation rate of pyrazines increased in the order: 2-aminopyrazine > 2-methoxypyrazine > 2-ethylpyrazine > 2-methylpyrazine > pyrazine. The rates correlate with the Hammett $\sigma$ relationship and the reaction constant $\rho$ was found to be -0.8, indicating that electron donating centres enhance the rate of reaction. An isokinetic temperature of $\beta$ = 333 K, indicated that the reaction was enthalpy controlled. A mechanism consistent with the experimental results has been proposed in which the rate determining step is the formation of an intermediate complex between the substrate and the diprotonated species of the oxidant. The related rate law in consistent with observed results has been deduced.

Keywords

References

  1. Campbell, M. M.; Johnson, G. Chem. Rev. 1978, 78, 65 https://doi.org/10.1021/cr60311a005
  2. Murthy, A. R. V.; Rao, B. S. Proc Indian Acad. Sci. 1952, 35, 69
  3. Banerji, K. K.; Jayaram, B.; Mahadevappa, D. S. J. Sci. Ind. Res. 1987, 46, 65
  4. Brenner, D. H. In. Synth. Reagents 1985, 6, 9
  5. Gowda, B. T.; Mahadevappa, D. S. J. Chem. Soc. Perkin Trans. II 1983, 323
  6. Geethanjali, A. Synlett. 2005, 18, 2857
  7. Kolvari, E.; Ghorbani-Choghamarani, A.; Salehi, P.; Shirini, F.; Zolfigol, M. A. J. Iran. Chem. Soc. 2007, 4, 126 https://doi.org/10.1007/BF03245963
  8. Puttaswamy.; Mahadevappa, D. S.; Rangappa, K. S. Bull. Chem. Soc. Japan 1989, 62, 3343 https://doi.org/10.1246/bcsj.62.3343
  9. Ananda, S.; Jagadeesha, M. B.; Puttaswamy.; Venkatesha, B. M.; Vinod, T. K.; Gowda, N. M. M. Int. J. Chem. Kinet. 2000, 32, 776 https://doi.org/10.1002/1097-4601(2000)32:12<776::AID-KIN5>3.0.CO;2-J
  10. Shashikala, V.; Rangappa, K. S. J. Carbohyd. Chem. 2002, 21, 219 https://doi.org/10.1081/CAR-120004334
  11. Puttaswamy.; Jagadeesh, R. V. Appl. Catal. A: Gen. 2005, 292, 259 https://doi.org/10.1016/j.apcata.2005.06.020
  12. Meenakshisundaram, SP.; Markkandan, R. Indian J. Chem. 2005, 44A, 71
  13. Usha, K. M.; Gowda, B. T. J. Che. Sci. 2006, 118, 351 https://doi.org/10.1007/BF02708530
  14. Vasudha, A. M. Structureal Aspects of Pseudoaromatic Compounds; University of Poona: Poona, 1966; p 10
  15. Andrew, J. T.; Mottaram, D. S. Flavor Science: Recent Developments; Woodhead Publishing: Great Britain, 1996; p 202
  16. Fennema, O. R. Food Chemistry; Marcel Dekker: The Ohio State Univer., Colombus, Ohio, 1996; p 741
  17. Brown, D. J. The Pyrazines; John-Wiley Interscience: New-York, 2002; p 77
  18. Borg-Karlson, A. K.; Tengo, J. J. Chem. Ecology 1980, 6, 827 https://doi.org/10.1007/BF00990406
  19. Joule, J. A.; Mills, K. Heterocyclic Chemistry; Wiley-Blackwell: New-York, 2002; p 194
  20. Craig, E. M.; Garth Pews, R. J. Org. Chem. 1977, 42, 1869 https://doi.org/10.1021/jo00431a010
  21. Nobuhiro, S. J. Org. Chem. 1978, 43, 3367 https://doi.org/10.1021/jo00411a022
  22. Seizaburo, O.; Akira, K.; Tsuneo, K.; Fumihiko, U. Chem. Pharm. Bull. 1971, 19, 1344 https://doi.org/10.1248/cpb.19.1344
  23. Elina, A. S.; Musatova, I. S.; Syrova, G. P. Khim. Getero. Soed. 1968, 4, 725
  24. Klein, B.; Berkowitz, J. J. Am. Chem. Soc. 1959, 81, 5160 https://doi.org/10.1021/ja01528a035
  25. Langmuir, V. K.; Laderoute, K. R.; Mendonca, H. L.; Sutherland, R. M.; Hei, T. K.; Liu, S. X.; Hall, E. J.; Naylor, M. A.; Adams, G. E. Int. J. Radiat. Oncol. Biol. Phys. 1996, 34, 79 https://doi.org/10.1016/0360-3016(95)02077-2
  26. Hei, T. K.; Liu, S. X.; Hall, E. J. Br. J. Cancer. Suppl. 1996, 7, 57
  27. Ahmed, M. S.; Mahadevappa, D. S. Talanta 1980, 27, 669 https://doi.org/10.1016/0039-9140(80)80207-4
  28. Morris, J. C.; Salazar, J. A.; Wineman, M. A. J. Am. Chem. Soc. 1948, 70, 2036 https://doi.org/10.1021/ja01186a016
  29. Puttaswamy.; Nirmala Vaz. Transition Met. Chem. 2003, 28, 409 https://doi.org/10.1023/A:1023624911189
  30. Akerloff, G. J. Am. Chem. Soc. 1932, 54, 4125 https://doi.org/10.1021/ja01350a001
  31. Bishop, E.; Jennings, V. J. Talanta 1959, 1, 197
  32. Hardy, F. F.; Johnston, J. P. J. Chem. Soc. Perkin Trans II 1973, 742
  33. Pryde, B. G.; Soper, F. G. J. Chem. Soc. 1962, 1582
  34. Narayanan, S. S.; Rao, V. R. S. Radio Chim. Acta 1983, 32, 211
  35. Subhashini, M.; Subramanian, M.; Rao, V. R. S. Talanta 1985, 32, 1082 https://doi.org/10.1016/0039-9140(85)80130-2
  36. Collins, C. J.; Bowman, N. S. Isotope Effects in Chemical Reactions; Van Nostrand Reinhold, New York, 1970; p 1267
  37. Kohen, A.; Limbach, H. H. Isptope Effects in Chemistry and Biology; CRC Press: Florida, 2006; p 827
  38. Moelwyn-Hughes, E. A. The Kinetics of Reaction in Solutions; Clarender Press: Oxford, 1947; p 374
  39. Benson, S. W. The Foundations of Chemical Kinetics; McGraw-Hill: New York, 1960; p 19
  40. Frost, A. A.; Pearson, R. G. Kinetics and Mechanism; Wiley: New York, 1961; p 135
  41. Laidler, K. J. Chemical Kinetics; Tata Mc Graw-Hill: New Delhi, 1995; p 211
  42. Amis, E. S. Solvent Effects on Reaction Rates and Mechanisms; Academic Press: New York, 1966; p 1672
  43. Gilliom, R. D. Introduction to Physical Organic Chemistry; Addison- Wesley: London, 1970; p 144
  44. Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96 https://doi.org/10.1021/ja01280a022
  45. Exner, O. Coll. Czech. Chem. Commun. 1964, 29, 1094 https://doi.org/10.1135/cccc19641094
  46. Exner, O. Pro. Phy. Org. Chem. 1973, 10, 411 https://doi.org/10.1002/9780470171899.ch6

Cited by

  1. Comparative Study on the Oxidation Kinetics of Structural Isomers by Acidified N-Bromo-Benzenesulfonamide: A Mechanistic Determination vol.2, pp.3, 2009, https://doi.org/10.1007/s42250-019-00068-9