DOI QR코드

DOI QR Code

The Synthesis of CuInS2 Nanoparticles by a Simple Sonochemical Method

  • Published : 2009.11.20

Abstract

$CuInS_{2}$ nanoparticles were synthesized by a simple sonochemical method; First, Cu nanoparticles were prepared from $CuInS_{2}$ in methanol solution by a one pot reaction through the sonochemistry under multibubble sonoluminescence (MBSL) conditions. Second, the resulting Cu nanoparticles were treated with $InCl_3{\cdot}4H_2O$ and $CH_3CSNH_2$ (thioacetamide) at the same MBSL conditions to synthesize $In_2S_3$-coated Cu nanoparticles in methanol solution. Then, they were transformed into $CuInS_{2}$ (CIS) nanoparticles of 20 $\sim$ 40 nm size in diameter by thermal heating at 300 ${^{\circ}C}$ for 2 hr. The prepared CIS nanoparticles, of which band gap is 1.44 eV, were investigated by X-ray diffractometer, UV-Vis spectrophotometer, inductively coupled plasma spectrometer, and high resolution-transmission electron microscope.

Keywords

References

  1. Goetzberger, A.; Hebling, C.; Schock, H.-W. Mater. Sci. Eng.: R: Reports 2003, 40, 1-46 https://doi.org/10.1016/S0927-796X(02)00092-X
  2. Guha, P.; Das, D.; Maity, A. B.; Ganguli, D.; Chaudhuri, S. Sol. Energ. Mat. Sol. C 2003, 80, 115-130 https://doi.org/10.1016/S0927-0248(03)00138-7
  3. Nomura, R.; Sekl, Y.; Matsuda, H. J. Mater. Chem. 1992, 2, 765-766 https://doi.org/10.1039/jm9920200765
  4. Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. Chem. Mater. 2003, 15, 3142-3147 https://doi.org/10.1021/cm034161o
  5. Nyari, T.; Barvinschi, P.; Baies, R.; Vlazan, P.; Barvinschi, F.; Dekany, I. J. Cryst. Growth 2005, 275, e2383-e2387 https://doi.org/10.1016/j.jcrysgro.2004.11.343
  6. Jiang, Y.; Wu, Y.; Mo, X.; Yu, W.; Xie, Y.; Qian, Y. Inorg. Chem. 2000, 39, 2964-2965 https://doi.org/10.1021/ic000126x
  7. Xiao, J.; Xie, Y.; Tang, R.; Qian, Y. J. Solid State Chem. 2001, 161, 179-183 https://doi.org/10.1006/jssc.2001.9247
  8. Jiang, Y.; Wu, Y.; Yuan, S.; Xie, B.; Zhang, S.; Qian, Y. J. Mater. Res. 2001, 16, 2805-2809 https://doi.org/10.1557/JMR.2001.0386
  9. Wakita, K.; Iwai, M.; Miyoshi, Y.; Fujibuchi, H.; Ashida, A. Compos. Sci. Technol. 2005, 65, 765-767 https://doi.org/10.1016/j.compscitech.2004.10.009
  10. Shen, G.; Chen, D.; Tang, K.; Fang, Z.; Sheng, J.; Qian, Y. J. Cryst. Growth 2003, 254, 75-79 https://doi.org/10.1016/S0022-0248(03)01142-4
  11. Hu, H.; Yang, B.; Liu, X.; Zhang, R.; Qian, Y. Inorg. Chem. Commun. 2004, 7, 563-565 https://doi.org/10.1016/j.inoche.2004.02.019
  12. Yamamoto, Y.; Yamaguchi, T.; Demizu, Y.; Tanaka, T.; Yoshida, A. Thin Solid Films 1996, 281-282, 372-374 https://doi.org/10.1016/0040-6090(96)08625-7
  13. Tembhurkar, Y. B. Mater. Sci. 1997, 20, 1011-1014
  14. Krunks, M.; Kijatkina, O.; Rebane, H.; Oja, I.; Mikli, V.; Mere, A. Thin Solid Films 2002, 403-404, 71-75 https://doi.org/10.1016/S0040-6090(01)01534-6
  15. Metzner, H.; Hahn, T.; Bremer, J. H.; Conrad, J. Appl. Phys. Lett. 1996, 69, 1900-1902 https://doi.org/10.1063/1.117615
  16. Djessas, K.; Masse, G.; Ibannaim, M. J. Electrochem. Soc. 2000, 147, 1235-1239 https://doi.org/10.1149/1.1393342
  17. Martinez, A. M.; Arriaga, L. G.; Fernandez, A. M.; Cano, U. Mater. Chem. Phys. 2004, 88, 417-420 https://doi.org/10.1016/j.matchemphys.2004.08.009
  18. Lee, S. S.; Seo, K. W.; Yoon, S. H.; Shim, I.-W.; Byun, K.-T.; Kwak, H.-Y. Bull. Korean Chem. Soc. 2005, 26, 1579-1581 https://doi.org/10.5012/bkcs.2005.26.10.1579
  19. Lee, S. S.; Byun, K.-T.; Park, J. P.; Kim, S. K.; Kwak, H.-Y.; Shim, I.-W. Dalton T. 2007, 2007, 4182
  20. Byun, K.-T.; Seo, K. W.; Shim, I.-W.; Kwak, H.-Y. Chem. Eng. J. 2008, 135, 168-173 https://doi.org/10.1016/j.cej.2007.03.085
  21. Lee, S. S.; Byun, K.-T.; Park, J. P.; Kim, S. K.; Lee, J. C.; Chang, S.-K.; Kwak, H.-Y.; Shim, I.-W. Chem. Eng. J. 2008, 139, 194-197 https://doi.org/10.1016/j.cej.2007.09.046
  22. Park, J. P.; Kim, S. K.; Park, J.-Y.; Ahn, S.; Ok, K. M.; Kwak, H.-Y.; Shim, I.-W. Thin Solid Films, pressed on line 2009:doi: 10.1016/j.tsf.2009.05.003
  23. Kim, H. W.; Kang, K. M.; Kwak, H.-Y. Int. J. Hydrogen Energ. 2009, 34, 3351-3359 https://doi.org/10.1016/j.ijhydene.2009.02.036
  24. Flint, E. B.; Suslick, K. S. Science 1991, 253, 1397-1399 https://doi.org/10.1126/science.253.5026.1397
  25. Suslick, K. S. Science 1990, 247, 1439-1445 https://doi.org/10.1126/science.247.4949.1439
  26. Crum, L. A.; Roy, R. A. Science 1994, 266, 233-234 https://doi.org/10.1126/science.266.5183.233
  27. Kwak, H.-Y.; Na, J. H. Phys. Rev. Lett. 1996, 77, 4454 https://doi.org/10.1103/PhysRevLett.77.4454
  28. Hayashi, Y.; Choi, P.-K. Ultrasonics 2006, 44, e421-e425 https://doi.org/10.1016/j.ultras.2006.08.011
  29. Powder Diffraction File, Joint Committee on Powder Diffraction Standard, ICDD, September 1995, Cards No. 04-0836. Version 1.10
  30. Powder Diffraction File, Joint Committee on Powder Diffraction Standard, ICDD, September 1995, Cards No. 32-0456. Version 1.10
  31. Powder Diffraction File, Joint Committee on Powder Diffraction Standard, ICDD, September 1995, Cards No. 27-0159. Version 1.10
  32. Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures; John Wiley and Sons: New York, 1974
  33. Lee, S. S.; Seo, K. W.; Park, J. P.; Kim, S. K.; Shim, I.-W. Inorg. Chem. 2007, 46, 1013-1017 https://doi.org/10.1021/ic061445c
  34. Dutta, P. D.; Sharma, G. Mater. Lett. 2006, 60, 2395-2398 https://doi.org/10.1016/j.matlet.2006.01.025
  35. Arici, E.; Sariciftci, N. S.; Meissner, D. Mol. Cryst. Liq. Crys. A 2002, 385, 129-136 https://doi.org/10.1080/713738801
  36. Oja, I.; Nanu, M.; Katerski, A.; Krunks, M.; Mere, A.; Raudoja, J.; Goossens, A. Thin Solid Films 2005, 480-481, 82-86 https://doi.org/10.1016/j.tsf.2004.11.013
  37. Lu, Q.; Hu, J.; Tang, K.; Qian, Y.; Zhou, G.; Liu, X. Inorg. Chem. 2000, 39, 1606-1607 https://doi.org/10.1021/ic9911365
  38. Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. J. Phys. Chem. B 2004, 108, 12429-12435 https://doi.org/10.1021/jp049107p
  39. Gou, X.; Cheng, F.; Shi, Y.; Zhang, L.; Peng, S.; Chen, J.; Shen, P. J. Am. Chem. Soc. 2006, 128, 7222-7229 https://doi.org/10.1021/ja0580845
  40. Qi, Y.; Tang, K.; Zeng, S.; Zhou, W. Micropor. Mesopor. Mat. 2008, 114, 395-400 https://doi.org/10.1016/j.micromeso.2008.01.027
  41. Peng, S.; Liang, J.; Zhang, L.; Shi, Y.; Chen, J. J. Cryst. Growth 2007, 305, 99-103 https://doi.org/10.1016/j.jcrysgro.2007.02.040
  42. Gardner, J.; Shurdha, E.; Wang, C.; Lau, L.; Rodriguez, R.; Pak, J. J. Nanopart. Res. 2008, 10, 633-641 https://doi.org/10.1007/s11051-007-9294-7

Cited by

  1. Large-Scale, Surfactant-Free Solution Syntheses of Cu(In,Ga)(S,Se)2 Nanocrystals for Thin Film Solar Cells vol.2011, pp.5, 2011, https://doi.org/10.1002/ejic.201000967
  2. Syntheses of CdTe Quantum Dots and Nanoparticles through Simple Sonochemical Method under Multibubble Sonoluminescence Conditions vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2207
  3. Synthesis of AS1411-Aptamer-Conjugated CdTe Quantum Dots with High Fluorescence Strength for Probe Labeling Tumor Cells vol.24, pp.5, 2014, https://doi.org/10.1007/s10895-014-1437-5
  4. Rapid Microwave-Enhanced Solvothermal Process for Synthesis of CuInSe2 Particles and Its Morphologic Manipulation vol.22, pp.14, 2009, https://doi.org/10.1021/cm1006263
  5. Syntheses of Cu2SnS3 and Cu2ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions vol.42, pp.29, 2009, https://doi.org/10.1039/c3dt50849h
  6. Copper Nanoparticles: Synthetic Strategies, Properties and Multifunctional Application vol.13, pp.2, 2009, https://doi.org/10.1142/s0219581x14300016
  7. CuGaS2 hollow spheres from Ga-CuS core-shell nanoparticles vol.21, pp.3, 2009, https://doi.org/10.1016/j.ultsonch.2013.12.004
  8. Syntheses of Cu2SnSe3 and Their Transformation into Cu2ZnSnSe4 Nanoparticles with Tunable Band Gap under Multibubble Sonoluminescence Conditions vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2331