DOI QR코드

DOI QR Code

Electrochemical Characteristics of Carbon-coated Si/Cu/graphite Composite Anode

  • Kim, Hyung-Sun (Battery Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Chung, Kyung-Yoon (Battery Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Cho, Won-Il (Battery Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Cho, Byung-Won (Battery Research Center, Korea Institute of Science and Technology (KIST))
  • Published : 2009.07.20

Abstract

The carbon-coated Si/Cu powder has been prepared by mechanical ball milling and hydrocarbon gas decomposition methods. The phase of Si/Cu powder was analyzed using X-ray diffraction (XRD), dispersive Raman spectroscopy, electron probe microanalysis (EPMA) and transmission electron microscope (TEM). The carbon-coated Si/Cu powders were used as anode active material for lithium-ion batteries. Their electrochemical properties were investigated by charge/discharge test using commercial LiCo$O_2$ cathode and lithium foil electrode, respectively. The surface phase of Si/Cu powders consisted of carbon phase like the carbon nanotubes (CNTs) with a spacing layer of 0.35 nm. The carbon-coated Si/Cu/graphite composite anode exhibited a higher capacity than commercial graphite anode. However, the cyclic efficiency and the capacity retention of the composite anode were lower compared with graphite anode as cycling proceeds. This effect may be attributed to some mass limitations in LiCo$O_2$ cathode materials during the cycling.

Keywords

References

  1. Netz, A.; Huggins, R. A.; Weppner, W. J. Power Sources 2003, 119-121, 95 https://doi.org/10.1016/S0378-7753(03)00132-0
  2. Kim, I.; Blomgren, G. E.; Kumta, P. N. Electrochemical and Solid-State Letters 2003, 6, A157 https://doi.org/10.1149/1.1584212
  3. Kim, H.; Chung, K.; Cho, B. J. Power Sources 2009, 189, 108 https://doi.org/10.1016/j.jpowsour.2008.10.045
  4. Dimov, N.; Kugino, S.; Yoshio, M. Electrochimica Acta 2003, 48, 1579 https://doi.org/10.1016/S0013-4686(03)00030-6
  5. Shi, D. Q.; Tu, J. P.; Yuan, Y. F.; Wu, H. M.; Li, Y.; Zhao, X. B. Electrochemistry Communications 2006, 8, 1610 https://doi.org/10.1016/j.elecom.2006.05.014
  6. Zuo, P.; Yin, G.; Hao, X.; Yang, Z.; Ma, Y.; Gao, Z. Materials Chemistry and Physics 2007, 104, 444 https://doi.org/10.1016/j.matchemphys.2007.04.001
  7. Kim, J.; Kim, H.; Sohn, H. Electrochemistry Communications 2005, 7, 557 https://doi.org/10.1016/j.elecom.2005.03.013
  8. Zhang, Z.; Dewan, C.; Kothari, S.; Mitra, S.; Teeters, D. Materials Science and Engineering B 2005, 116, 363 https://doi.org/10.1016/j.mseb.2004.05.049
  9. Liu, Y.; Hanai, K.; Yang, J.; Imanishi, N.; Hirano, A.; Ichikawa, T.; Takeda, T. Electrochemical and Solid-State Letters 2004, 7, A369 https://doi.org/10.1149/1.1795031
  10. Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Dimov, N.; Ogumi, Z. J. Electrochem. Soc. 2002, 149, A1598 https://doi.org/10.1149/1.1518988
  11. Kim, H.; Chung, K.; Cho, B. Bull. Korean Chem. Soc. 2008, 29, 1965 https://doi.org/10.5012/bkcs.2008.29.10.1965
  12. Obrovac, M.; Christensen, L. Electrochemical and Solid-State Letters 2004, 7, A93 https://doi.org/10.1149/1.1652421

Cited by

  1. Sawtooth- or Pyramidal-patterned Si Negative Electrode Fabricated by Micro-Electro-Mechanical Systems for Li-Ion Secondary Battery vol.37, pp.11, 2016, https://doi.org/10.1002/bkcs.10961
  2. Electrochemical Characteristics of Lithium Vanadium Oxide for Lithium Secondary Battery vol.31, pp.5, 2010, https://doi.org/10.5012/bkcs.2010.31.5.1267