DOI QR코드

DOI QR Code

Structural Characteristics that Influence on the Insecticidal Activity of 2-(n-Octyl)pseudothiourea Analogues against the Diamondback Moth (Plutella xylostella, L.)

  • Soung, Min-Gyu (Department of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Kil, Mun-Jae (Department of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Sung, Nack-Do (Department of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • Published : 2009.11.20

Abstract

Structural characteristics that influence on the insecticidal activity ($pI_{50}$) of 2-(n-octyl)isothiourea analogues (1-45) against the diamondback moth (Plutella xylostella, L.) based on three dimensional quantitative structure activity relationships (3D-QSARs) were discussed quantitatively using a comparative molecular field analysis (CoMFA) and a comparative molecular similarity indeces analysis (CoMSIA) methods. The statistical values of the CoMFA 2 model were better than those of the CoMSIA 1 model. The CoMFA 2 model was the optimized model with the correlativity (the training set: Ave. = 0.104 & PRESS = 0.613) and the predictability (the test set: Ave. = 0.086 & PRESS = 0.096). Insecticidal activities with the optimized CoMFA 2 model were dependent upon steric factors (79.4%) of $R_1-R_3$ substituents. From the analytical results of CoMFA contour maps, it is predicted that the R1 substituent of 1-45 which has a steric favor in a broad space, $R_2\;and\;R_3$ groups with a steric favor in a narrow space and a H-bond donor favor would have better the insecticidal activity.

Keywords

References

  1. Isayama, S.; Saito, S.; Kuroda, K.; Umeda, K.; Kasamatsu, K. Arch. Insec. Biochem. Physiol. 2005, 58, 226 https://doi.org/10.1002/arch.20045
  2. Zafeirdou, G.; Theophilidis, G. Neurosci. Lett. 2004, 365, 205 https://doi.org/10.1016/j.neulet.2004.04.084
  3. Enayati, A.; Ranson, H.; Hemingway, J. Insec. Mol. Biol. 2005, 14, 3 https://doi.org/10.1111/j.1365-2583.2004.00529.x
  4. Imai, T.; Watanabe, T.; Yui, T.; Sugiyama, J. Biochem. J. 2003, 374, 755 https://doi.org/10.1042/BJ20030145
  5. Tomlin, C. D. S. In A World Compendium: The Pesticide Manual., 14th ed.; British Crop Production Council. 7 Omni Business Centre, Omega Park, Alton, Hampshire; Gu34 2QD., U. K., 2006
  6. www.koreacpa.org
  7. Sung, N. D.; Yu, S. J.; Choi, K. S.; Kwon, K. S. Korean J. Pestic. Sci. 1998, 2, 46
  8. Sung, N. D.; Jeong, K. C.; Jeon, D. J.; Kim, D. W. Agri. Chem. Biotechnol. 1995, 38, 163
  9. James, D. G. J. Economic Entomol. 2004, 97, 900 https://doi.org/10.1603/0022-0493(2004)097[0900:EOBOSO]2.0.CO;2
  10. Robertson, J. C.; Look, M. P. J. Georgia Entomol. Soc. 1982, 17, 466
  11. El-Din, A. T. F. T.; El-Deeb, S. T.; Khalifa, M. A.; Ibrahim, A. M. Mededelingen van de Faculteit Landbouwwetenschappen 1977, 42, 1487.
  12. Fancher, L. W.; Scher, H. B. Stauffer Chemical Co., USA, Pat. WO 80-US110 (19800121).
  13. Fancher, L. W.; Scher, H. B. Stauffer Chemical Co., USA, Pat. US80-185462 (19800909)
  14. Kondo, S.; Maekawa, K. J. Faculty Agri. Kyushu Univ. 1976, 20, 97
  15. Holdsworth, E.; Everest-Todd, S. Yorkshire Tar Distillers Ltd., Pat. GB 839797, CAN 54:128571, AN 1960:128571
  16. Nagasaki, F.; Suzuki, J.; Ono, I.; Yamada, T.; Takahashi, E.; Hatano, R. Nippon Soda., Ltd., Japan., Pat. JP 89-55424 (19890308)
  17. Bachmann, M.; Gsell, L.; Fischer, H. P. Fr. Demande., Pat. FR 88-2075 (19880222)
  18. Boeger, M.; Drabek, J.; Ehrenfreund, J. Ciba-Geigy Switz., Eur Pat. EP 88-810397 (19880613)
  19. Sung, N. D.; Yu, S. J.; Jeon, D. J.; Kim, D. W. Korean J. Pestic. Sci. 1997, 1, 1
  20. Cho, Y. G.; Choi, W. Y.; Sung, N. D. J. Agri. Sci. Chungnam Nat'l Univ. 2007, 34, 171 https://doi.org/10.1007/s12272-001-2148-4
  21. Thibaut, U. In 3D-QSAR in Drug Design: Theory, Methods and Applications.; Applications of CoMFA and Related 3D-QSAR Approaches; Kubinyi, H., Ed.; ESCOM Science Publishers B. V.: Leiden, Netherland, 1993; p 643-665 https://doi.org/10.1016/S0006-3495(94)80624-1
  22. Kim, S. J.; Myung, P. K.; Sung, N. D. Arch. Pharm. Res. 2008, 31, 1540. https://doi.org/10.1007/s12272-001-2148-4
  23. Soung, M. G.; Lee, Y. J.; Sung, N. D. Bull. Korean Chem. Soc. 2009, 30, 613 https://doi.org/10.1016/0263-7855(92)80070-T
  24. Kerr, R. Biophys. J. 1964, 67, 1501 https://doi.org/10.1016/S0006-3495(94)80624-1
  25. Cramer III, R. D.; Bunce, J. D. In QSAR in Drug Design and Toxicology (Proceedings of the 6th European Symoisium on QSAR),The DYLOMMS Methods: Initial Results from a Comparative Study of Approaches to 3D-QSAR; Hadzi, D.; Jerman-Blazic, B., Eds.; Elsevier: Amsterdam, 1987; p 3-12 https://doi.org/10.1021/ar00172a005
  26. Kellog, G. E.; Abraham, D. J. J. Mol. Graphics. 1992, 10, 212 https://doi.org/10.1016/0263-7855(92)80070-T
  27. Schneider, G.; Baringhaus, K.-H. In Molecular Design; Concepts and Applications; Wiley-VCH: Frankfurt, Germany, 2007; p 64-65
  28. Etter, M. C. Acc. Chem. Res. 1990, 23, 120 https://doi.org/10.1021/ar00172a005

Cited by

  1. Minimum Structural Requirements for Fungicidal Evaluation of N-Phenyl-O-phenylthionocarbamates against the Capsicum Phytophthora Blight (Phyophthora capsici) Based on the 3D-QSARs vol.31, pp.11, 2009, https://doi.org/10.5012/bkcs.2010.31.11.3297
  2. 3D-QSAR Analysis and Molecular Docking of Thiosemicarbazone Analogues as a Potent Tyrosinase Inhibitor vol.32, pp.4, 2009, https://doi.org/10.5012/bkcs.2011.32.4.1241