DOI QR코드

DOI QR Code

Absolute Configurations of (±)-Glabridin Enantiomers

  • Kim, Mi-Hyang (Program in Applied Life Chemistry, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Soo-Un (Program in Applied Life Chemistry, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Yong-Ung (Department of Herbal Pharmaceutical Engineering, Daegu Haany University) ;
  • Han, Jae-Hong (Metalloenzyme Research Group and Department of Biotechnology, Chung-Ang University)
  • Published : 2009.02.20

Abstract

Concerned with ambiguous stereochemistry assignment of natural (+)-glabridin, absolute configurations of (${\pm}$)-glabridin enantiomers were studied with synthetic glabridin. Synthetic glabridin enantiomers were separated by semi-preparative Sumi-chiral column chromatography, and characterized by UV-Vis and NMR spectroscopy. Three-dimensional molecular structure of glabridin was obtained as equatorial Ph-3 half chair chroman ring from semi-empirical PM3 calculation, and refined by coupling constants in $^1H$ NMR spectrum. Finally, absolute configurations of two enantiomers were determined by circular dichroism spectroscopy based on the empirical helicity rules. Absolute configuration of natural (+)-glabridin was confirmed as (R)-glabridin, as known.

Keywords

References

  1. Dixon, R. A.; Sumner, L. W. Plant Physiol. 2003, 131, 878- 885. https://doi.org/10.1104/pp.102.017319
  2. Jung, S.-H.; Cho, S.-H.; Dang, T.-H.; Lee, J.-H.; Ju, J.-H.; Kim, M.-K.; Lee, S.-H.; Ryu, J.-C.; Kim, Y. Eur. J. Med. Chem. 2003, 38, 537-545. https://doi.org/10.1016/S0223-5234(03)00064-3
  3. Somjen, D.; Knoll, E.; Vaya, J.; Stern, N.; Tamir, S. J. Steroid Biochem. Mol. Biol. 2004, 91, 147-155. https://doi.org/10.1016/j.jsbmb.2004.04.003
  4. Shin, B.-K.; Kim, H. M.; Lee, S.; Han, J. Bull. Korean Chem. Soc. 2008, 29, 1572-1574. https://doi.org/10.5012/bkcs.2008.29.8.1572
  5. Magee, P. J.; Raschke, M.; Steiner, C.; Duffin, J. G.; Pool-Zobel, B. L.; Jokela, T.; Wahala, K.; Rowland, I. R. Nutr. Cancer 2006, 54, 232-242. https://doi.org/10.1207/s15327914nc5402_10
  6. Muthyala, R. S.; Ju, Y. H.; Sheng, S.; Williams, L. D.; Doerge, D. R.; Katzenellenbogen, B. S.; Helferich, W. G.; Katzenellenbogen, J. A. Bioorg. Med. Chem. 2004, 12, 1559-1567. https://doi.org/10.1016/j.bmc.2003.11.035
  7. Frase, R. R. In Asymmetric Synthesis Morrison, J. D., Ed.; Academic New York, 1983 Vol. 1, Chap. 9.
  8. Gawronski, J. K.; Kwit, M.; Boyd, D. R.; Sharma, N. D.; Malone, J. F.; Drake, A. F. J. Am. Chem. Soc. 2005, 127, 4308-4319. https://doi.org/10.1021/ja042895b
  9. Snatzke, G.; Znatzke, F.; Tökés, A. L.; Rákosi, M.; Bognár, R. Tetrahderon 1973, 29, 909-912. https://doi.org/10.1016/0040-4020(73)80037-7
  10. Slade, D.; Ferreira, D.; Marais, J. P. J. Phytochemistry 2005, 66, 2177-2215. https://doi.org/10.1016/j.phytochem.2005.02.002
  11. Won, D.; Shin, B.-K.; Han, J. J. Appl. Biol. Chem. 2008, 51, 17-19.
  12. Won, D.; Shin, B.-K.; Kang, S.; Hur, H.-G.; Kim, M.; Han, J. Bioorg. Med. Chem. Lett. 2008, 18, 1952-1957. https://doi.org/10.1016/j.bmcl.2008.01.116
  13. Fukai, T.; Marumo, A.; Kaitou, K.; Kanda, T.; Terada, S.; Nomura, T. Life Sciences 2002, 71, 1449-1463. https://doi.org/10.1016/S0024-3205(02)01864-7
  14. Gupta, V. K.; Fatima, A.; Faridi, U.; Negi, A. S.; Shanker, K.; Kumar, J. K.; Rahuja, N.; Luqman, S.; Sisodia, B. S.; Saikia, D.; Darokar, M.P.; Khanuja, P. S. J. Ethnopharmacol. 2008, 116, 377-380. https://doi.org/10.1016/j.jep.2007.11.037
  15. Tamir, S.; Eizenberg, M.; Somjen, D.; Stern, N.; Shelach, R.;Kaye, A.; Vaya, J. Cancer Res. 2000, 60, 5704-5709.
  16. Fukai, T.; Satoh, K.; Nomura, T.; Sakagami, H. Fitoterapia 2003, 74, 720-724. https://doi.org/10.1016/j.fitote.2003.07.004
  17. Yu, X.-Q.; Xue, C. C.; Zhou, Z.-W.; Li, C.-G.; Du, Y.-M.; Liang, J.; Zhou, S.-F. Life Sciences 2008, 82, 68-78. https://doi.org/10.1016/j.lfs.2007.10.019
  18. Fuhrman, B.; Buch, S.; Vaya, J.; Belinky, P. A.; Coleman, R.;Hayek, T.; Aviram, M. Am. J. Clin. Nutr. 1997, 66, 267-275.
  19. Fuhrman, B.; Volkova, N.; Aviram, M. Atherosclerosis 2002, 161, 307-316. https://doi.org/10.1016/S0021-9150(01)00646-3
  20. Kent, U. M.; Aviram, M.; Rosenblat, M.; Hollenberg, P. F. Drug Metab. Dispos. 2002, 30, 709-715. https://doi.org/10.1124/dmd.30.6.709
  21. Tsukamoto, S.; Aburatani, M.; Yoshida, T.; Yamashita, Y.;El-Beih, A. A.; Ohta, T. Biol. Pharm. Bull. 2005, 28, 2000-2002. https://doi.org/10.1248/bpb.28.2000
  22. Kang, J. S.; Yoon, Y. D.; Cho, I. J.; Han, M. H.; Lee, C. W.; Park, S.-K.; Kim, H. M. J. Pharmacol. Exp. Ther. 2005, 312, 1187-1194. https://doi.org/10.1124/jpet.104.077107
  23. Somjen, D.; Katzburg, S.; Vaya, J.; Kaye, A. M.; Hendel, D.;Posner, G. H.; Tamir, S. J. Steroid Biochem. Mol. Biol. 2004, 91, 241-246. https://doi.org/10.1016/j.jsbmb.2004.04.008
  24. Choi, E.-M. Biochem. Pharmacol. 2005, 70, 363-368. https://doi.org/10.1016/j.bcp.2005.04.019
  25. Saitoh, T.; Kinoshita, T.; Shibata, S. Chem. Pharm. Bull. 1976, 24, 752-755. https://doi.org/10.1248/cpb.24.752
  26. Kurosawa, K.; Ollis, W. D.; Redman, B. T.; Sutherland, I. O.;Gottlieb, O. R.; Alves, H. M. Chem. Comm. 1968, 1265-1267.
  27. Kurosawa, K.; Ollis, W. D.; Redman, B. T.; Sutherland, I. O.;Alves, H. M.; Gottlieb, O. R. Phytochemistry 1978, 17, 1423- 1426. https://doi.org/10.1016/S0031-9422(00)94602-8
  28. Yoo, S.-K.; Nahm, K. Bull. Korean Chem. Soc. 2007, 28, 481-484. https://doi.org/10.5012/bkcs.2007.28.3.481
  29. Shin, B.-K.; Han, J. Bull. Korean Chem. Soc. 2008, 29, 2299- 2302. https://doi.org/10.5012/bkcs.2008.29.11.2299
  30. Kinoshita, T.; Kajiyama, K.; Hiraga, Y.; Takahashi, K.; Tamura, Y.; Mizutani, K. Heterocycles 1996, 43, 581-588. https://doi.org/10.3987/COM-95-7296
  31. Pachler, K. G. R. Tetrahedron 1971, 27, 187-199. https://doi.org/10.1016/S0040-4020(01)92410-X
  32. Crabbé, P. In Topics in Stereochemistry; Allinger, N. L.; Eliel, E. L., Eds.; Wiley: New York, 1967; Vol. 1, pp 93-185.
  33. Versteeg, M.; Bezuidenhoudt, B. C. B.; Ferreira, D. Tetrahedron 1999, 55, 3365-3376. https://doi.org/10.1016/S0040-4020(98)01147-8

Cited by

  1. ChemInform Abstract: Absolute Configuration of (.+-.)-Glabridin Enantiomers. vol.40, pp.27, 2009, https://doi.org/10.1002/chin.200927187
  2. Supercritical CO2 for efficient extraction of polymethoxyflavones in Kaempferia parviflora vol.54, pp.6, 2011, https://doi.org/10.1007/BF03253194
  3. Glabridin vol.68, pp.12, 2012, https://doi.org/10.1107/S1600536812048647
  4. Absolute configuration of naturally occurring glabridin vol.69, pp.11, 2013, https://doi.org/10.1107/S0108270113018842
  5. vol.76, pp.5, 2013, https://doi.org/10.1021/np4000763
  6. Sphenostylisins A–K: Bioactive Modified Isoflavonoid Constituents of the Root Bark of Sphenostylis marginata ssp. erecta vol.78, pp.20, 2013, https://doi.org/10.1021/jo401573h
  7. Amino acid substitutions in naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 result in regio- and stereo-specific hydroxylation of flavanone and isoflavanone vol.97, pp.2, 2013, https://doi.org/10.1007/s00253-012-3962-y
  8. Enantiomeric Separation of Chiral Amines and Amino Alcohols Using Acetylated β-Cyclodextrin Stationary Phase by High-Performance Liquid Chromatography vol.37, pp.2, 2009, https://doi.org/10.15583/jpchrom.2015.036
  9. 감초 추출물로부터 항균성 물질의 분리 및 동정 vol.33, pp.2, 2009, https://doi.org/10.12925/jkocs.2016.33.2.255