DOI QR코드

DOI QR Code

Investigation on Reaction Pathways for ZnO Formation from Diethylzinc and Water during Chemical Vapor Deposition

  • Kim, Young-Seok (Department of Chemical Engineering, University of Massachusetts) ;
  • Won, Yong-Sun (Electro-Mechanics, Central R&D Institute)
  • Published : 2009.07.20

Abstract

A computational study of the reactions between Zn-containing species, the products of the thermal decomposition of diethylzinc (DEZn) and water was investigated. The Zn-containing species – $C_2H_5)_2,\;HZnC_2H_5,\;and\;(ZnC_2H_5)_2$ – were assumed to react with water during ZnO metal organic chemical vapor deposition (MOCVD). Density functional theory (DFT) calculations at the level of B3LYP/6-311G(d) were employed for the geometry optimization and thermodynamic property evaluation. As a result dihydroxozinc, $Zn(OH)_2$, was the most probable reaction product common for all three Zn-containing species. A further clustering of $Zn(OH)_2$ was investigated to understand the initial stage of ZnO film deposition. In experiments, the reactions of DEZn and water were examined by in-situ Raman scattering in a specially designed MOCVD reactor. Although direct evidence of $Zn(OH)_2$ was not observed, some relevant reaction intermediates were successfully detected to support the validity of the gas phase reaction pathways proposed in the computational study.

Keywords

References

  1. Bachari, E. M.; Baud, G.; Amor, S. B.; Jacquet, M. Thin Solid Films 1999, 348, 165 https://doi.org/10.1016/S0040-6090(99)00060-7
  2. Waag, A.; Gruber, Th.; Thonke, K.; Sauer, T.; Kling, R.; Kirchner, C.; Ress, H. J. Alloy. Compd. 2004, 371, 77 https://doi.org/10.1016/j.jallcom.2003.06.007
  3. Zeng, K.; Zhu, F.; Hu, J.; Shen, L.; Zhang, K.; Gong, H. Thin Solid Films 2003, 443, 60 https://doi.org/10.1016/S0040-6090(03)00915-5
  4. Feng, X. J. Phys.: Condens. Matter 2004, 16, 4251 https://doi.org/10.1088/0953-8984/16/24/007
  5. Wang, L.; Pu, Y.; Chen, Y. F.; Mo, C. L.; Fang, W. Q.; Xiong, C. B.; Dai, J. N.; Jiang, F. Y. J. Cryst. Growth 2004, 284, 459 https://doi.org/10.1016/j.jcrysgro.2005.06.058
  6. Haga, K.; Katahira, F.; Watanabe, H. Thin Solid Films 1999, 343, 145 https://doi.org/10.1016/S0040-6090(98)01649-6
  7. Mycielski, A.; Kowalczyk, L.; Szadkowski, A.; Chwalisz, B.; Wysmolek, A.; Stepniewski, R.; Baranowski, J. M.; Petemski, M.; Witowski, A.; Jakiela, R.; Barcz, A.; Witkowska, B.; Kaliszek, W.; Jedrzejcak, A.; Suchocki, A.; Lusakowska E.; Kaminska, E. J. Alloy. Compd. 2004, 371, 150 https://doi.org/10.1016/j.jallcom.2003.08.106
  8. Allendorf, M. D. Thin Solid Films 2001, 392, 155 https://doi.org/10.1016/S0040-6090(01)01021-5
  9. Chandrasekhar, R.; Choy, K. L. Thin Solid Films 2001, 398, 59 https://doi.org/10.1016/S0040-6090(01)01434-1
  10. Allendorf, M. D.; Melius, C. F. Surf. Coat. Technol 1998, 108, 191 https://doi.org/10.1016/S0257-8972(98)00660-4
  11. Kim,Y. S.; Won, Y. S.; Weaver, H.; Omenetto, N.; Anderson, T. J. J. Phys. Chem. A 2008, 112, 4246 https://doi.org/10.1021/jp7103787
  12. Won, Y. S.; Kim, Y. S.; Kryliouk, O.; Anderson, T. J. J. Cryst. Growth 2008, 310, 3735 https://doi.org/10.1016/j.jcrysgro.2008.05.045
  13. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03 Revision C.02; Gaussian, Inc.: Wallingford CT, 2004
  14. Smith, S. M.; Schlegel, H. B. Chem. Mater. 2003, 15, 162 https://doi.org/10.1021/cm020726p
  15. Matxain, J. M.; Fowler, J. E.; Ugalde, J. M. Phys. Rev. A 2002, 62, 053201 https://doi.org/10.1103/PhysRevA.62.053201
  16. Behrman, E. C.; Foehrweiser, R. K.; Myers, J. R.; French, B. R.; Zandler, M. E. Phys. Rev. A 1994, 49, R1543 https://doi.org/10.1103/PhysRevA.49.R1543

Cited by

  1. Ethanol-enriched low-pressure chemical vapor deposition ZnO bilayers: Properties and growth—A potential electrode for thin film solar cells vol.113, pp.2, 2013, https://doi.org/10.1063/1.4775483
  2. Inference on the Production Mechanism of ZnO Thin Films from Activated Water and Dimethylzinc Molecules vol.52, pp.9R, 2013, https://doi.org/10.7567/JJAP.52.096701
  3. Dynamically controlled synthesis of different ZnO nanostructures by a surfactant-free hydrothermal method vol.16, pp.38, 2014, https://doi.org/10.1039/C4CE01282H
  4. Chemical reaction-transport model of oxidized diethylzinc based on quantum mechanics and computational fluid dynamics approaches vol.8, pp.2, 2018, https://doi.org/10.1039/C7RA11534B
  5. Controlling morphology and charge transfer in ZnO/polythiophene photovoltaic films vol.2, pp.21, 2009, https://doi.org/10.1039/c3tc32246g